摘要
应用神经网络的理论和方法,首先建立离心铸造缺陷诊断的神经元模型,然后建立BP神经网络模型进行学习训练后,得出了离心铸造磨辊的正确诊断方案。训练结果表明,该神经网络的各项误差指标均达到了满意的要求,充分有力地说明了用这种BP神经网络模型诊断离心铸件具有可靠性与优越性。
Building the defect diagnosis model of centrifugal casting grinding roller with the theory of neural network,then the reasonable defect diagnosis result of the centrifugal casting grinding roller was obtained after back-propagation neural network's establishing and training.All of the BP neural network's error index accord with the demands,which illustrate the reliability and advantage of the models used in centrifugal casting.
出处
《黑龙江八一农垦大学学报》
2012年第1期5-7,共3页
journal of heilongjiang bayi agricultural university
关键词
BP神经网络
磨辊
离心铸造
缺陷诊断
Back-propagation neural network
grinding roller
centrifugal casting
defect diagnosis
作者简介
郭占斌(1966-),男,教授,黑龙江八一农垦大学博士研究生毕业,现主要从事机械设计及理论方向的研究工作。