期刊文献+

神经网络的BP算法研究高速钢轧辊的热处理工艺 被引量:1

Study the Heat Treatment of Casting High Speed Steel Roll by Using Artificial Neutral Network BP Algorithm
在线阅读 下载PDF
导出
摘要 材料的处理工艺和性能之间具有很强的非线性关系,人工神经网络是解决非线性映射关系的一种有效的方法。本文以离心铸造高速钢轧辊的热处理工艺与性能的关系为研究对象,以人工神经网络中的BP算法为基础,借助MATLAB工具设计出具有预测高速钢轧辊性能的网络模型,训练后的网络模型对高速钢轧辊的硬度进行预测,得到了较好的效果。 There is a very strong relationship between the heat treatment and properties of materials. Since the artificial neural network is effective to solve the nonlinear relationship. This study focused on the casting high speed steel roll, employed the back propagation algorithm of artificial neutral network and Matlab software to design the predicting model. With the trained model, the hardness of roll inner layer was predicted and the desired result was obtained.
出处 《铸造技术》 CAS 北大核心 2007年第11期1518-1521,共4页 Foundry Technology
基金 西安市科技工业攻关项目支持 项目号为GG04062
关键词 高速钢轧辊 热处理 BP神经网络 硬度 Casting high speed steel roll Heat treatment BP network The forecasting of the properties
作者简介 邹德宁(1964-),女,山东烟台人,博士.研究方向:钢铁新材料制造过程的优化研究.
  • 相关文献

参考文献7

  • 1Golozar M A. Optimizing the microstructure and mechanical properties of as-cast hot rolling sleeves by heat treatment [J]. Materials and Manufacturing Processes, 2000, 15 (3) :377-394.
  • 2Lee J H, Oh J C, Park J W, et al. Effects of tempering temperature on wear resistance and surface roughness of a high speed steel roll[J]. ISIJ Inter. , 2001,41 (8) : 859- 865.
  • 3Okabayashi A, Morikawa H and Tsujimoto Y. Development and characteristics of high speed steel roll by centrifugal casting[J]. SEAISI Quarterly, 1997,26 (4) : 30-40.
  • 4Hashimoto M, Kawakami T, Oda T, et al. Development and application of high-speed tool steel rolls in hot strip rolling[J]. Nippon Steel Technical Report, 1995, (66): 82-90.
  • 5飞思科技,MATLAB应用技术-MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
  • 6李学桥,马莉.神经网路与工程应用[M].重庆:重庆大学出版社,1996.
  • 7焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1996.37-39.

共引文献29

同被引文献10

  • 1甘忠,成武冬,许旭东,潘栋杰.BP神经网络预测铝合金应力松弛量研究[J].兵器材料科学与工程,2009,32(2):35-38. 被引量:5
  • 2Ozerdem M S, Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys [J ]. Materials and Design, 2009,30: 764-769.
  • 3Mousavi Anijdan S H, Bahrami A, Madaah Hosseini H R, et al. Using genetic algorithm and artificial neural network analyses to design an A1-Si casting alloy of minimum porosity[J]. Mate-rials and Design, 2006,27 : 605-609.
  • 4Chen Zhiyu, Zou Dening, Yu Junhui, et al. Artificial neural network approach to predict mechanical properties of 301 austenitic stainless steel [J]. Materials Science Forum, 2010,658: 145- 148.
  • 5Zakeri M, Bahrami A, Mousavi Anijdan S H. Using genetic al- gorithm in heat treatment optimization of 17-4PH stainless steel[ J ]. Materials and Design, 2007,28 : 2034-2039.
  • 6Mirzadeh H, Najafizadeh A. ANN modeling of strain-induced martensite and its applications in metastable austenitic stain less steels [J]. Journal of Alloys and Compounds, 2009,476: 352-355.
  • 7Blanco A, Delgado M, Pegalajar M C. A real-coded genetic al gorithm for training recurrent neural networks [J ]. Neural Networks, 2001,14 ( 1 ) : 93-105.
  • 8焦少阳,董建新,张麦仓,郑磊.双金属热轧复合的界面结合影响因素及结合机理[J].材料导报,2009,23(1):59-62. 被引量:33
  • 9吴维,温彤,蒲思洪.层状复合板层间剪切强度的研究现状[J].机械制造,2009,47(1):34-37. 被引量:5
  • 10乌日根,董俊慧,王玉荣.基于神经网络的RE-Ni-Cu合金铸铁腐蚀性能预测[J].兵器材料科学与工程,2009,32(1):28-31. 被引量:5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部