摘要
从群速度的角度推导了包含均匀稳定来流的二维波动方程的1阶吸收边界条件,基于Che-byshev谱元法提出了二维均匀稳定来流波动方程的求解方法.在空间上采用谱元方法,在时间上采用隐式Newmark积分法,从而获得了波动方程的离散形式.经具体算例验证表明:与1阶Clay-ton-Engquist-Majda吸收边界条件相比,所推导的吸收边界条件能更有效地削弱边界上的数值反射,避免解的失真,求解方法在空间上具有谱精度,在时间上达到了2阶精度.
In this study, the Chebyshev spectral elements approximation was applied to solve the acoustic propagation problem in the subsonic uniform mean flow. From the group velocity, the first-order Eliane-Dan-Thomas absorbing boundary condition was derived for the boundaries of the solution domain. In this approach, the discretization of the wave equation is based on the spectral elements in space and the implicit Newmark method in time marching. The numerical results with higher-order spectral accuracy in space and second-order accuracy in time agree well with the benchmark solutions. Compared with the first-order Clayton-Engquist-Majda absorbing boundary condition for the same wave problem, the first-order Eliane-Dan-Thomas absorbing boundary condition proposed here can effectively reduce the numerical reflection on boundaries and avoid solution distortion.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2012年第3期100-106,共7页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(51076123)
关键词
吸收边界条件
声传播
谱元法
隐式Newmark积分法
群速度
absorbing boundary condition
wave propagation
spectral element method
implicit Newmark method
group velocity
作者简介
耿艳辉(1985-),女,博士生;
秦国良(通信作者),男,教授.