期刊文献+

Chebyshev谱元法求解含吸收边界的二维均匀稳定流场的声传播 被引量:3

Chebyshev Spectral Elements Method for 2-Dimensional Acoustic Propagation Problem in a Uniform Mean Flow with Absorbing Boundary Condition
在线阅读 下载PDF
导出
摘要 从群速度的角度推导了包含均匀稳定来流的二维波动方程的1阶吸收边界条件,基于Che-byshev谱元法提出了二维均匀稳定来流波动方程的求解方法.在空间上采用谱元方法,在时间上采用隐式Newmark积分法,从而获得了波动方程的离散形式.经具体算例验证表明:与1阶Clay-ton-Engquist-Majda吸收边界条件相比,所推导的吸收边界条件能更有效地削弱边界上的数值反射,避免解的失真,求解方法在空间上具有谱精度,在时间上达到了2阶精度. In this study, the Chebyshev spectral elements approximation was applied to solve the acoustic propagation problem in the subsonic uniform mean flow. From the group velocity, the first-order Eliane-Dan-Thomas absorbing boundary condition was derived for the boundaries of the solution domain. In this approach, the discretization of the wave equation is based on the spectral elements in space and the implicit Newmark method in time marching. The numerical results with higher-order spectral accuracy in space and second-order accuracy in time agree well with the benchmark solutions. Compared with the first-order Clayton-Engquist-Majda absorbing boundary condition for the same wave problem, the first-order Eliane-Dan-Thomas absorbing boundary condition proposed here can effectively reduce the numerical reflection on boundaries and avoid solution distortion.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第3期100-106,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51076123)
关键词 吸收边界条件 声传播 谱元法 隐式Newmark积分法 群速度 absorbing boundary condition wave propagation spectral element method implicit Newmark method group velocity
作者简介 耿艳辉(1985-),女,博士生; 秦国良(通信作者),男,教授.
  • 相关文献

参考文献11

  • 1LIGHTHILL M J.On sound generated aerodynami-cally:I General theory[J].Proceedings of the Roy-al Society of London:Series A Mathematical Physicaland Engineering Sciences,1952:564-587.
  • 2PATERA A T.A spectral element:method for fluid dy-namics:laminar flow in a channel expansion[J].Journalof Computational Physics,1984,54(3):468-488.
  • 3CLAYTON R,ENGQUIST B.Absorbing boundaryconditions for acoustic and elastic wave equations[J].Bulletin of Seismological Society of America,1977,67(6):1529-1540.
  • 4ENGQUIST B,MAJDA A.Absorbing boundary con-ditions for numerical simulation of waves[J].AppliedMathematical Sciences,1977,74(5):1765-1766.
  • 5ENGQUIST B,MAJDA A.Absorbing boundary con-ditions for the numerical simulation of waves[J].Mathematics of Computation,1977,31(139):629-651.
  • 6Renaut R,Froehlich J.Pseudospectral Chebychevmethod for the 2Dwave equation with domain stretc-hing and absorbing boundary conditions[J].Journal ofComputational Physics,1996,124:324-336.
  • 7邵秀民,刘臻.带吸收边界条件的声波方程显式差分格式的稳定性分析[J].计算数学,2001,23(2):163-186. 被引量:11
  • 8许靖,秦国良,朱昌允.谱元方法求解含吸收边界的声学问题[J].西安交通大学学报,2007,41(7):875-878. 被引量:3
  • 9ELIANE B,DAN GIVOLI,THOMAS H.High-order absorbing boundary conditions for anisotropicand convective wave equations[J].Journal of Compu-tational Physics,2010,229(4):1099-1129.
  • 10张荣欣,秦国良.用切比雪夫谱元方法求解均匀流场中的声传播问题[J].西安交通大学学报,2009,43(7):120-124. 被引量:8

二级参考文献29

  • 1许靖,秦国良,朱昌允.谱元方法求解含吸收边界的声学问题[J].西安交通大学学报,2007,41(7):875-878. 被引量:3
  • 2LIGHTHILL M J.On sound generated aerodynami-cally:general theory[J].Proc Roy London Soc:Mathematical and Physical Science:1952,211(1107):564-587.
  • 3LELE S K.Compact finite difference schemes with spectral like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
  • 4JAE W K,DUCK J L.Optimized compact finite difference schemes with maximum resolution[J].AIAA Journal,1996,34(5):887-893.
  • 5WU S W,LIAN S H,HSU L H.A finite element model for acoustic radiation[J],Journal of Sound and Vibration,1998,215(3):489-498.
  • 6HARTEN A,ENGQUIST A,OSHER S,et al.Uniformly high-order accuracy essentially non-oscillatory schemes:III[J].Journal of Computational Physics,1987,71(2):231-323.
  • 7TAM C K W,WEBB J C.Dispersion-relation-preserving finite difference schemes for computational acous-tics[J].Journal of Computational Physics,1993,107 (2):262-281.
  • 8TAM C K W.Computational aeroacoustics:issues and methods[J].AIAA Journal,1995,33(10):1788-1796.
  • 9LELE S K.Computational aeroacoustics:a review[C/ OL].Aerospace Science Meeting and Exhibit[2008-09-05].http://www.aiaa.org/content cfm? pageld.
  • 10PATERA A T.A spectral element method for fluid dynamics:laminar flow in a channel expansion[J].Journal of Computational Physics,1984,54(3):468-488.

共引文献21

同被引文献24

  • 1Patera A T. A spectral element nmthod for fluid dynamics: laminar flow in a channel expansion..Journal of Computa- tional Physics, 1984; 54(3): 468- 488.
  • 2Dauksher W, Emery A F. Accuracy in modeling the acous- tic wave equation with Chebyshev spectral finite elenmnts. Finite elements in analysis and design, 1997; 26(2): 115 -128.
  • 3Rong Z J, Xu C J. Numerical approximation of acoustic waves by spectral element methods. Applied numerical mathematics, 2008; 58(7): 999- 1016.
  • 4Zhu C Y, Qin G L, Zhang J Z. Implicit Chebyshev spec- tral element method for acoustics wave equations. Finite elements in analysis and design, 2011; 47(2): 184- 194.
  • 5Zampieri E, Pavarino L F. Approximation of acoustic waves by explicit Newmark's schemes and spectral element meth- ods. Journal of computational and applied mathematics, 2006; 185(2): 308- 325.
  • 6Gopalakrishnan S, Doyle J F. Spectral super-elements for wave propagation in structures with local non-uniformities. Computer methods in applied mechanics and engineering, 1995; 121(1-4): 77-90.
  • 7Seriani G. Double-grid Chebyshev spectral elements for acoustic wave modeling. Wave Motion, 2004; 39(4): 351 -360.
  • 8French D A, Peterson T E. A continuous space-time finite element method for the wave equation. Mathematics of computation, 1996; 65(214): 491-506.
  • 9Anderson M, Kimn J H. A numerical approach to space- time finite element for the wave equation. Journal of Com- putational Physics, 2007; 226(1): 466-476.
  • 10Thompson L L, He D T. Adaptive space-time finite element methods for the wave equation on unbounded domains. Computer methods in applied mechanics and engineering, 2005; 194(18 20): 1947-2000.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部