期刊文献+

用切比雪夫谱元方法求解均匀流场中的声传播问题 被引量:8

Chebychev Spectral Elements Method for Acoustic Propagation Problem in a Uniform Mean Flow
在线阅读 下载PDF
导出
摘要 利用谱元方法中的无穷光滑插值函数的高阶精度特点,结合隐式时间推进算法的稳定性,推导并实现了低马赫数均匀流场中声波动方程的切比雪夫谱元解法,进而得到了流场影响下的声传播问题的数值解.该解法对均匀流场中的声传播问题在空间上进行谱元离散,在边界上引入Clay-ton-Engquist-Majda吸收边界条件,在时间上利用隐式Newmark积分方法推进求解.算例与解析解的对比验证表明:该解法在空间上可以实现高阶精度,在时间上达到2阶精度;使用的隐式New-mark时间积分方法稳定性好,计算工作量相对较小;当数值解达到稳态传播时和解析解吻合得非常好.随着计算条件的飞速发展,加密网格并采用更高阶的切比雪夫谱逼近可以进一步提高精度,以适应计算气动声学的精度要求,另外可尝试采用更高精度的吸收边界条件以改善边界反射对计算声场的干扰. High order accuracy is of great significance for computational aero-acoustics (CAA). On the basis of the high order accuracy of the infinite smooth interpolation function adopted in the spectral elements method, a Chebychev spectral elements approximation for the acoustic propagation problem in the subsonic uniform mean flow is applied in this study. In this approach, the discretization is based on spectral elements in space with first-order Clayton-Engquist-Majda absorbing boundary conditions and the implicit Newmark method in time marching. The numerical results with sixth-order spectral accuracy in space and up to second-order in time agree well with the analytical solutions. The Newmark method in time with less computing resource consumption also has the advantages of stability. The higher order spectral approximation can be employed to further enhance the accuracy and higher order absorbing boundary conditions might be applied to improve the spectral element approach.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第7期120-124,共5页 Journal of Xi'an Jiaotong University
关键词 计算气动声学 谱元方法 吸收边界条件 高精度 computational aero-acoustics spectral elements method absorbing boundary condition high order accuracy
作者简介 张荣欣(1984-),男,硕士生; 秦国良(联系人),男,教授
  • 相关文献

参考文献16

  • 1LIGHTHILL M J.On sound generated aerodynami-cally:general theory[J].Proc Roy London Soc:Mathematical and Physical Science:1952,211(1107):564-587.
  • 2LELE S K.Compact finite difference schemes with spectral like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
  • 3JAE W K,DUCK J L.Optimized compact finite difference schemes with maximum resolution[J].AIAA Journal,1996,34(5):887-893.
  • 4傅德薰,马延文.高精度差分格式及多尺度流场特性的数值模拟[J].空气动力学学报,1998,16(1):24-24. 被引量:17
  • 5WU S W,LIAN S H,HSU L H.A finite element model for acoustic radiation[J],Journal of Sound and Vibration,1998,215(3):489-498.
  • 6HARTEN A,ENGQUIST A,OSHER S,et al.Uniformly high-order accuracy essentially non-oscillatory schemes:III[J].Journal of Computational Physics,1987,71(2):231-323.
  • 7TAM C K W,WEBB J C.Dispersion-relation-preserving finite difference schemes for computational acous-tics[J].Journal of Computational Physics,1993,107 (2):262-281.
  • 8TAM C K W.Computational aeroacoustics:issues and methods[J].AIAA Journal,1995,33(10):1788-1796.
  • 9LELE S K.Computational aeroacoustics:a review[C/ OL].Aerospace Science Meeting and Exhibit[2008-09-05].http://www.aiaa.org/content cfm? pageld.
  • 10PATERA A T.A spectral element method for fluid dynamics:laminar flow in a channel expansion[J].Journal of Computational Physics,1984,54(3):468-488.

二级参考文献24

  • 1傅德薰,中国科学.A,1996年,6卷,7期
  • 2刘宏,中国科学.A,1996年,6卷,7期
  • 3袁礼,中国科学.A,1995年,25卷,9期
  • 4傅德薰,Comput Fluid Dynamics Review 1995,1995年
  • 5傅德薰,中国科学.A,1993年,23卷,7期
  • 6马延文,Comput Fluid Dyn J,1992年,5期
  • 7刘儒勋,计算物理,1992年,9卷,4期,479页
  • 8马延文,中国科学.A,1992年,3期
  • 9Rai M M,J Comput Phys,1991年,96卷,1期,15页
  • 10Zhang Hanxin,A Collection of Technical Papers 3ISCFD-Nagoya,1989年

共引文献24

同被引文献67

  • 1谢悦,林建国,芦静.浓度对流扩散方程并行计算与MATLAB高效实现方法[J].计算机应用研究,2020,37(S01):143-146. 被引量:1
  • 2许靖,秦国良,朱昌允.谱元方法求解含吸收边界的声学问题[J].西安交通大学学报,2007,41(7):875-878. 被引量:3
  • 3SHEN W Z, MICHELSEN J A, SORENSEN J N. A collocated grid finite volume method for aeroacoustic computations of low-speed flows[J]. Journal of Computational Physics, 2004, 196:348-366.
  • 4LIGHTHILL M J. On sound generated aerodynamically. I: General theory [ C ]//Proceedings of the Royal Society A. London, 1952.
  • 5PHILIP J M,LYLE N L,ASHOK B,et al. A parallel threedimensional computational aeroacoustics method using nonlinear disturbance equations [ J ]. Journal of Computational Physics, 1997,133:56-74.
  • 6SHEN H, TAM C W. Numerical simulation of the generation of axisymmetric mode jet screech tones [ J ]. AIAA Journal, 1998,36 ( 10 ) : 1801-1828.
  • 7HARDIN J C, POPE D S. An acoustic/viscous splitting technique for computational aeroacoustics [ J ]. Theoret Comput Fluid Dynamics, 1994,6:323-340.
  • 8SHEN W Z, SORENSEN J N. Aeroacoustic modeling of low-speed flows [ J ]. Theoret Comput. Fluid Dynamics, 1999,13:271-289.
  • 9SHEN W Z, SORENSEN J N. Aeroacoustic modeling of turbulent airfoil flows [ J 1. J AIAA, 2001,39 (6) : 1057-1064.
  • 10NOGUEIRA X,COLOMINAS I, FELGUEROSO L C, et al. Resolution of computational aeroacoustics problems on unstructured grids with a higher-order finite volume scheme [ J ]. Journal of Computational and Applied Mathematics 2010,234 (7) :2089-2097.

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部