期刊文献+

基于免疫算法的细菌觅食优化算法 被引量:20

Bacteria foraging optimization algorithm based on immune algorithm
在线阅读 下载PDF
导出
摘要 针对细菌觅食优化算法经常出现的速度较慢、步长一致的缺陷,赋予细菌灵敏度的概念,对细菌游动的步长进行调节以提高收敛速度。采用免疫算法中的克隆选择思想,对精英细菌群体进行克隆、高频变异和随机交叉,引导算法提高搜索精度。典型高维函数测试表明,改进算法的搜索速度和精度得到极大提升,算法改造后可适用于多维、约束等实际工程问题中的优化。 To correct the defects such as slower speed,step consistence in bacteria foraging optimization algorithm,this paper presented the concept of the sensitivity of bacteria to increase convergence speed by adjusting the step size of bacterial swimming.The clonal selection ideas in immune algorithm were used to achieve bacterial cloning,high-frequency variation and random crossover of the elite group,and to guide the search algorithm to improve accuracy.A number of typical high-dimensional function tests show that the improved algorithm has been greatly improved in terms of search speed and accuracy,and is more appropriate to solve practical engineering optimization problems such as high dimensionality,constraints.
出处 《计算机应用》 CSCD 北大核心 2012年第3期634-637,653,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(71071057) 中央高校基本科研业务费专项资金资助项目(2012ZMO031)
关键词 灵敏度 免疫算法 细菌觅食 全局优化 sensitivity immune algorithm bacterial foraging global optimization
作者简介 通信作者:刘小龙(1977-),男,湖南永州人,讲师,博士,主要研究方向:智能优化算法、管理决策,电子邮箱:810963@qq.com;赵奎领(1986-),男,河南禹州人,硕士研究生,主要研究方向:生产系统优化。
  • 相关文献

参考文献19

  • 1MIILLER S,AIRAGHI S,MARCHELO J,et al.Optimization algorithms based on a model of bacterial chemotaxis[C] // Proceedings of the 6th International Conference on Simulation of Adaptive Behavior.Boston:MIT Press,2000:375-384.
  • 2PASSINO K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22(3):52-67.
  • 3LIU Y,PASSINO K M,POLYCARPOU M M.Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology[J].IEEE Transactions on Automatic Control,2003,48(1):76-95.
  • 4MISHRA S.A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation[J].IEEE Transactions on Evolutionary Computation,2005,9(1):61-73.
  • 5MAJHI R,PANDA G,MAJHI B,et al.Efficient prediction of stock market indices using Adaptive Bacterial Foraging Optimization (ABFO) and BFO based techniques[J].Expert Systems with Applications,2009,36(6):10097-10104.
  • 6DATTA T,MISRA I S,MANGARAJ B B,et al.Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence[J].Progress in Electromagnetics Research C,2008,1:143-157.
  • 7CHEN H,ZHU Y,HU K.Self-adaptation in bacterial foraging optimization algorithm[C] // Proceedings of the 3rd International Conference on Intelligent System and Knowledge Engineering.Piscataway,NJ:IEEE Press,2008:1026-1031.
  • 8BISWAS A,DASGUPTA S,DAS S,et al.Synergy of PSO and bacterial foraging optimization —— A comparative study on numerical benchmarks[EB/OL].[2010-05-10].http://www.softcomputing.net/hais07_2.pdf.
  • 9BAKWAD K M,PATTNAIK S S,SOHI B S,et al.Hybrid bacterial foraging with parameter free PSO[C] // NaBIC 2009: Word Congress on Nature & Biologically Inspired Computing.Piscataway,NJ:IEEE Press,2009:1077-1081.
  • 10TANG W J,WU Q H,SAUNDERS J R.A bacterial swarming algorithm for global optimization[C] // Congress on Evolutionary Computation.Piscataway,N J:IEEE Press,2007:1207-1212.

同被引文献188

引证文献20

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部