期刊文献+

线性改变切削深度对单晶铜纳米切削的影响 被引量:5

Influence of linearly varying cutting depth on nanocutting of monocrystalline copper
在线阅读 下载PDF
导出
摘要 针对单晶铜纳米切削,利用分数阶微积分理论,建立了切削力主趋势分量对切削深度的依赖模型,以描述非线性的尺寸效应。利用近似熵测度,研究了在不同切削阶段中切削力高频扰动的复杂性。研究表明,在切入阶段,切削力经历了由负值到较大正值的突变,工件材料出现弹性失稳以及初期的弹塑性转变;在切削阶段,切削力的主趋势分量呈现明显的低频峰谷现象和非线性的尺寸效应。通过观测工件材料内部的位错形核及位错运动,详细地解释了切削力在线性改变切削深度条件下呈现这种演变特征的根本原因。 A model was built for the dependence of the principal tendency component of the cutting force on the cutting depth in the nanocutting process of the monocrystalline copper to explain the non-linear size effect.The complexity of the high-frequency disturbance of the cutting force during different cutting phases was examined by the approximate entropy measure.The obtained results show that the cutting force changes abruptly from the negative value to a large positive value in the cutting-in phase,appear the phenomena of the elasticity instability and the incipient elasticity-plasticity transition.During the cutting phase,the principal tendency component of the cutting force varies in low-frequency with distinct peaks and valleys,and there presents the non-linear size effect depending on the cutting depth.Observing the dislocation nucleation and the dislocation motion inside the workpiece material,the radical cause of the evolution characteristic of the cutting force during the linearly varying cutting depth was explained.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第1期109-115,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51175221 51075041 50775099) 高等学校博士学科点专项科研基金项目(20070183104)
关键词 机床 纳米切削 分子动力学 切削力 位错运动 分数阶微积分 近似熵 machine tool nanocutting molecular dynamics cutting force dislocation motion fractional calculus approximate entropy
作者简介 周晓勤(1967-),男,教授,博士生导师.研究方向:先进光学制造.E—mail:xqzhou@jlu.edu.cn
  • 相关文献

参考文献23

  • 1Liu X, De Vor R E, Kapoor S G, et al. The me- chanics of machining at the microscale: assessment of the current state ot: the science [J]. ASME J Manuf Sci Eng, 2004,126: 666-678.
  • 2Pei Q, Lu C, Lee H. Large scale molecular dynam- ics study of nanometric machining of copper[J]. Comput Mater Sci, 2007, 41: 177-185.
  • 3ZhuPZ, HuY Z, MaTB, et al. Study of AFM- based nano-metric cutting process using molecular dynamics[J]. Appl Surf Sci, 2010, 256(23) : 7160-7164.
  • 4Chu C, Tan C. Deformation analysis of nanocutting using atomistic model[J]. Int J Solid Struct, 2009, 46:1807-1814.
  • 5Lin Z C, Huang J C. A study of the estimation method of the cutting force for a conical tool under nano-scale depth of cut by molecular dynamics[J]. Nanotechnology, 2008, 19(11) : 115-701.
  • 6Fang F Z, Zhang X D, Hu X T. Cylindrical coordi- nate machining of optical freeform surfaces[J]. Optic Express, 2008, 16: 7323-7331.
  • 7Shamoto E, Suzuki N, Hino R. Analysis of 3D elliptical vibration cutting with thin shear plane model [J]. CIRP Ann-Manuf Tech, 2008,57: 57-60.
  • 8Kim HS, LeeKI, LeeK M, et al. Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measure- ment[J]. Int J Mach Tool Manufact, 2009, 49: 991-997.
  • 9Li J, Van Vliet K J, Zhu T, et al. Atomistic mech- anisms governing elastic limit and incipient plasticity in crystals[J]. Nature, 2002, 418(18): 307-310.
  • 10Gouldstone A, Van Vliet K J, Suresh S, et al. Sim- ulation of defect nucleation in a crystal[J]. Nature, 2001,411(7) : 656.

同被引文献21

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部