期刊文献+

基于多通道自适应自回归模型脑-机接口系统特征的提取 被引量:3

Features extraction of brain-computer interface based on adaptive autoregressive models
在线阅读 下载PDF
导出
摘要 背景:由于脑电图信号的非平稳特性,脑-机接口系统至今仍然没有走出实验室,制约脑-机接口实用的主要原因之一是由于被试生理或心理状态的干扰下,脑电特征信号动态变化,难以得到稳定可靠的分类特征。目的:观察动态提取基于左手、右手和脚3种运动想象时的脑电信号分类特征,提高在线脑-机接口系统分类准确率和反应速度。方法:共有3位自愿受试者参加了实验,按照屏幕上的提示分别想象左手、右手和脚3种运动,对采集到的脑电图信号,首先通过带通及拉普拉斯滤波,去除眼电等干扰;其次提取改进的多变量自适应自回归模型模型参数作为分类特征;最后与传统的自适应自回归模型和自回归模型方法进行了比较。结果与结论:结果表明改进的多通道自适应自回归模型算法能够比较稳定的提取出对应左手、右手和脚的分类特征,有利于进一步改进在线脑-机接口数据分析算法的自适应能力,促进脑-机接口系统的实际应用。 BACKGROUND:Due to the non-stationary nature of electroencephalograms(EEG) signals,brain-computer interface(BCI) cannot walk out of the laboratory.Due to dynamical changes of the EEG signals under the disturbance of physical or psychological conditions,it is difficult to obtain stable classified features,which is one of the main reasons for the practical utility of BCI.OBJECTIVE:To observe the classified features of EEG signals base on left hand,right hand and foot movement in order to improve the reaction rate and accuracy of classification in BCI METHODS:Three subjects were selected for the BCI experiment.Three mental tasks with the imagination of left hand,right hand and foot movement were followed according to the screen instructions.The disturbance of electro-oculogram in EEG signal was removed by using band-pass and Laplace filter.Model parameter of many variables adaptive autoregressive models(MVAAR) was extracted as the classified features.The comparison between MVAAR and traditional adaptive autoregressive models was made.RESULTS AND CONCLUSION:The result showed that classified features of left hand,right hand and foot movement could be extracted stably in MVAAR,which is beneficial to improve the adaptive ability of online BCI and the application of BCI system.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第48期9007-9010,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 河北省自然科学基金(E2009000062) 具有被试针对性的运动想象脑机接口技术研究~~
作者简介 王江,男,1975年生,河北省唐山市人,汉族,2007年河北工业大学电工理论与新技术专业毕业,硕士,讲师,主要从事生物医学信号处理研究.tswxwj@yeah.net
  • 相关文献

参考文献20

  • 1Wolpaw JR,Birbaumer N,McFarland DJ,Pfurtscheller G.Brian-computer interfaces for communication and control.Clin Neuroph.2002;113:767-791.
  • 2Wolpaw JR,Birbaumer N,Heetderks WJ,et al.Brain-computer interface technology:a review of the first international meeting.IEEE Trans Rehabil Eng.2000;8(2):164-173.
  • 3Birbaumer N.Breaking the silence:brain-computer interfaces (BCI) for communication and motor control.Psychophysiology.2006;43(6):517-532.
  • 4Wolpaw JR,Loeb GE,Allison BZ.BCI Meeting 2005:workshop on signals and recording methods.IEEE Trans Neural Syst Rehabil Eng.2006;14(2):138-141.
  • 5Vaughan TM,McFarland DJ,Schalk G.The Wadsworth BCI Research and Development Program:at home with BCI.IEEE Trans Neural Syst Rehabil Eng.2006;14(2):229-233.
  • 6Middendorf M,McMillan G,Calhoun G.Brain-computer interfaces based on the steady-state visual-evoked response.IEEE Trans Rehabil Eng.2000;8(2):211-214.
  • 7Mellinger J,Schalk G,Braun C.An MEG-based brain-computer interface (BCI).Neuroimage.2007;36(3):581-593.
  • 8Moore MM.Real-world applications for brain-computer interface technology.IEEE Trans Neural Syst Rehabil Eng.2003;11(2):162-165.
  • 9Birbaumer N,Hinterberger T,Kubler A,et al.Newman,The thought-translation device:neurobehavioral mechanisms and clinical outcome.IEEE Trans Neural Syst Rehab Eng.2003;11:120-123.
  • 10Vidaurre C,Schl(o)gl A.Comparison of adaptive features with linear discriminant classifier for Brain Computer Interfaces.30th Annual International IEEE EMBS Conference,Vancouver,British Columbia,Canada.August 20-24,2008:173-176.

二级参考文献58

  • 1杨帮华,颜国正,鄢波.基于离散小波变换提取脑机接口中脑电特征[J].中国生物医学工程学报,2006,25(5):518-522. 被引量:20
  • 2李庆杨 易大义 等.现代数值分析[M].北京:高等教育出版社,1995..
  • 3Pfurtscheller G,Neuper C.Motor magery and DirectBrain-communi-cation[J].Proceedings of the IEEE,2001,89(7):1123-1134.
  • 4Lian Xiang,Yao Dezhong,Wu Dan,et al.Combining spatial filters for the classification of single-triM EEG in a finger movement task[J].IEEE Transations on Biomedical Engineering,2007:1-10.
  • 5Prezenger M,Pfurtscheller G.Frequency component selection for an EEG-based brain computer interface[J].IEEE Trans on Rehabil Eng,1999,7:413-419.
  • 6Dipl-lng Dr.Alois Schlogl[EB/OL].(2005).http://ida.first.fraunhofcr.de/projects/bci/competition.ⅲ/.
  • 7Dharwarkar G S,Basir O.Enhancing temporal Classification of AAR parameters in EEG single-trial analysis for Brain-Computer Interfacing[C]//Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai,China,2005-09:1-4.
  • 8Vidaurre C,Schlogl A,Cabeza R.Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces[J].IEEE Transactions on Biomedical Engineering,2004,8(2):546-549.
  • 9Anderson C W,Stolz E A,Shamsunder S.Multivariate Autoregressive Models for Classification of Spontaneous Electroencephalographic Signals[J].IEEE Transactions on Biomedical Engineering,1998,45(3):277-280.
  • 10Trejo L J,Rosipal R,Matthews B.Brain computer interfaces for 1-D and 2-D cursor control:designs using volitional control of the EEG spectrum or steady-state visual evoked potentials[J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):423-428.

共引文献20

同被引文献34

  • 1何庆华,吴宝明,彭承琳,王禾,钟渝.基于小波和神经网络的视觉诱发电位识别方法[J].仪器仪表学报,2007,28(6):1003-1006. 被引量:10
  • 2徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633. 被引量:10
  • 3金晶,王行愚,张秀.基于能量特征的左右手运动想象脑信号的识别方法[J].华东理工大学学报(自然科学版),2007,33(4):536-540. 被引量:5
  • 4吴婷,颜国正,杨帮华.一种快速的脑电信号特征提取与分类方法[J].系统仿真学报,2007,19(18):4342-4344. 被引量:9
  • 5徐长发,李国宽.实用小波方法[M].第二版.武汉:华中科技大学出版社.2004,101-102.
  • 6李丽君.基于运动想象的脑电信号特征提取及分类算法研究[D].广州:华南理工大学,2012.
  • 7Birbaumer N, Heetderks WJ. Brain-computer interface technology a review of the first international meeting[J]. IEEE Trans Neur Syst Rehabil Eng, 2000, (8): 164-173.
  • 8Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event related brain potentials[J]. Electroenceph Clin Neurophysio, 1988, 70(1): 510- 523.
  • 9Sutter EE. The brain response interface: communication through visually induced electrical brain response[J]. J Microcomput App, 1992, 15(I): 31- 45.
  • 10Pfurstcbeller G, Lopes da Silva FH. Event-related EEG / MEG synchronization and desynchronizaiton: basic principles[J]. Clin Neurophy, 1999, 110(11): 1842-1857.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部