期刊文献+

基于小波包和熵准则的最优频段提取方法 被引量:20

Optimal frequency band extraction method based on wavelet packet and entropy criterion
在线阅读 下载PDF
导出
摘要 为实现运动功能障碍患者的运动意愿和基于脑机接口技术的实际康复运动的一致性,进一步改善康复效果,以想象右手食指屈伸运动为例,对身体相同或相近部位的不同运动想象方式产生的脑电信号(记为EEGs)的特征提取方法进行研究。针对食指屈伸运动想象EEGs的事件相关去同步化现象(event-related desynchronization,ERD)不显著及发生的时间及频段的个体差异等特点,提出了基于小波包和熵准则的最优频段提取方法。该方法首先利用小波包分析对右手食指屈、伸运动想象EEGs进行分解;其次,利用熵准则对特征频段的可分度进行度量,从而选取相对明显的频段小波包组合,并以相应的小波包系数构成特征矢量;最后,结合支持向量机实现最优频段的选取。实验结果表明,该特征提取方法能够自适应提取右手食指屈伸运动想象EEGs的ERD现象差异性较大的频段特征,最高分类正确率为81.75%,验证了所提方法的有效性。 The implementation of the consistency between motor intention and practical rehabilitation exercise based on brain-computer interface technology is necessary to improve the rehabilitation effect for people with dyskinesia. Taking the flexion and extension motor imagery of index finger as an example, the feature extraction method for the electroencephalogram produced by the same or similar body parts under different motor imagery tasks (labelled as EEGs) is studied in this paper. Aiming at the characteristics of EEGs, including its weak phenomenon of event-related desynchronization(ERD) and large individual differences of time and frequency bands where ERD appears, an optimal frequency band extraction method is proposed based on wavelet packet decomposition and entropy criterion. The EEGs of the flexion and extension motor imagery of index finger are decomposed with wavelet packet analysis firstly. Then, the separability values of the characteristic frequency bands are measured with entropy criterion. Furthermore, some clearer wavelet packets are selected to form a combination, and corresponding wavelet packet coeffi- cients are used to construct the feature vectors. Lastly, the optimal band is obtained with support vector machine. Experiment results show that the feature extraction method can choose the feature bands with large difference in ERD phenomenon of the EEGs, and the highest classification accuracy is 81.75% , which verifies the correctness and validity of the presented method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第8期1721-1728,共8页 Chinese Journal of Scientific Instrument
基金 北京市教委面上项目(KM201110005005) 北京市自然基金项目(4112011) 北京工业大学基础研究基金(X4002011201101)资助项目
关键词 运动想象脑电 特征提取 小波包 熵准则 最优频段 motor imagery EEG feature extraction wavelet package entropy criterion optimal frequency band
作者简介 李明爱(通讯作者),2006年于北京工业大学获得博士学位,现为北京工业大学副教授,主要研究方向为脑机接口、模式识别与智能控制。E—mail:Limingai@bjut.edu.cn马建勇,现为北京工业大学硕士研究生,主要研究方向为模式识别与智能控制。E—mail:Majianyong7@126.com
  • 相关文献

参考文献22

  • 1赵丽,孙永,马彦臻,何洋.基于SSVEP的脑-机接口自动车系统研究[J].电子测量技术,2011,34(12):70-72. 被引量:4
  • 2徐宝国,宋爱国,费树岷.运动意识任务的模式识别方法研究[J].仪器仪表学报,2011,32(1):13-18. 被引量:5
  • 3GUGER C,HARKAM W,HERTNAES C,et al.Prosthetic control by an EEG-based brain-computer interface (BCI)[J].Assistive Technology on the Threshold of the New Millennium,1999 (6):590-595.
  • 4周鹏,曹红宝,熊屹,葛家怡,张爽,王明时.基于脑机接口的智能康复系统的设计[J].计算机工程与应用,2007,43(26):1-4. 被引量:18
  • 5宋治.对脑可塑性理论的思考[J].医学与哲学,1997,18(3):125-127. 被引量:2
  • 6STASTNY J,SOVKA P,STANCAK A.EEG signal classification[C].Proceedings of the 23rd Annual International Conference of the IEEE on Engineering in Medicine and Biology Society,lstanbul,Turkey,2001,2020-2023.
  • 7STASTNY J,ZEJBRDLICH J,SOVKA P.Optimal parameterization selection for the brain-computer interface[C].AEE05 Proceedings of the 4th WSEAS international conference on Applications of electrical engineering,2005:300-304.
  • 8HAZRATI M K H,ERFANIAN A.An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network[J].Medical Engineering & Physics,2010,7 (32):730-739.
  • 9AHMADI M,ERFAN1AN A.An on-line BCI system for hand movement control using real-time recurrent probabilistic neural network[C].Neural Engineering,2009.NER'09.4th International IEEE/EMBS Conference,Antalya,2009:367-370.
  • 10STASTNY J,SOVKA P,STANCAK A.EEG signal classification:Introduction to the problem[J].Radio Engineering,2003,3(12):51-55.

二级参考文献123

共引文献187

同被引文献178

引证文献20

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部