期刊文献+

基于增量半监督仿生模式识别的运动想象脑电识别 被引量:2

Motor Imagery EEG Recognition Based on Incremental Semi-supervised Biomimetic Pattern Recognition
在线阅读 下载PDF
导出
摘要 针对BCI研究中样本采集代价较大,如何充分利用未标记的样本来提升识别性能的问题,本研究将仿生模式识别算法(BPR)与增量半监督学习算法结合,以Bagging算法框架为基础,提出了一种新的增量半监督的仿生模式识别算法(BPR-ISSL)。以脑机接口国际大赛公布的数据集对该算法进行了离线分析以及模拟在线的实验,并且使用作者在线采集的实际脑电数据进行了实际在线实验,比较分析了BPR-ISSL与作者之前提出的改进仿生模式识别算法,以及BPR-ISSL与增量半监督SVM、增量半监督BP的识别性能。实验结果表明:在训练样本较充足的情况下,BPR-ISSL识别准确率优于其它3种算法,平均准确率要高出3%左右;并且通过对标准差的计算,其在抗过学习和稳定性上也体现出了明显的优势。 In order to solve the problem that how to make full use of the unlabeled samples to promote recognition accuracy due to high cost acquisition of data in BCI research, biomimetie pattern recognition (BPR) was combined with semi-supervised learning algorithm on the basis of the Bagging algorithm framework, and a novel Incremental Semi-Supervised Biomimetie Pattern Recognition (BPR-ISSL) was proposed in this work. We conducted off-line analysis and simulative on-line experiments on the datasets from previous brain-computer interface competitions and real on-line experiments on actual on-line EEG data to test the accuracy and efficiency of the proposed algorithm. Comparing with those of improved BPR, SVM-ISSL and BP-ISSL, the BPR-ISSL showed that higher accuracy (3% higher in average) in reference to those of the other three algorithms, especially with the sufficient samples. Furthermore, it has a better anti-over-learning ability and stability according to standard deviation.
作者 武妍 徐凯
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第6期878-884,共7页 Chinese Journal of Biomedical Engineering
关键词 增量半监督 仿生模式识别 脑机接口 运动想象 incremental semi-supervised learning biomimetic pattern recognition brain-computer interface motor imagerly
作者简介 通讯作者。E—mail:yanwu@tongji.edu.cn
  • 相关文献

参考文献14

  • 1Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Braincomputer interface technology:A review of the first international meeting [J]. IEEE Trans Rehab Eng, 2000, 8(2) :164 - 173.
  • 2Graimann B, Huggins JE, Schlogl A, et al. Detection of movement-related desynchronization patterns in ongoing singlechannel electrocorticogram [ J ]. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(3) :276 -281.
  • 3Schlogl A, Lee F, Pfurtscheller G, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005 [J]. Journal of Neural Engineering, 2005, 2(4) :L14 -L22.
  • 4Lottel F, Congedo M, Amaldi B, et al. A review of classification algorithms for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering, 2007, 4(2) :R1 -R13.
  • 5Rakotomamonjy A, Guigue V, Mallet G, et al. Ensemble of SVMs for improving brain computer interface p300 speller performances [ C ]//Wlodzislaw D, Erkki O, Slawomir Z, eds. 15th International Conference on Artificial Neural Networks: Biological Inspirations ( ICANN 2005 ). Warsaw: Springer Verlag, 2005:45 - 50.
  • 6Liao Xiang, Yao Dezhong, Li Chaoyi. Transduetive SVM for reducing the training effort in BCI [ J ]. Journal of Neural Engineering, 2007, 4 (3) :246 - 254.
  • 7Long Jinyi, Li Yuanqing, Yu Zhuliang. A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces [ J ]. Cognitive Neurodynamics, 2010, 4 (3) :207 - 216.
  • 8Qian Mingjie, Nie Feiping, Zhang Changshui. Efficient multiclass unlabeled constrained semi-supervised SVM [ C ]// ACM 18th International Conference on Information and Knowledge Management ( CIKM 2009). Hang Kong: ACM, 2009 : 1665 - 1668.
  • 9Cao Yuan, He Haibo. Learning from testing data:a new view of incremental semi-supervised learning [ C ]//IEEE International Joint Conference on Neural Networks (IJCNN 2008 ). Hong Kong : IEEE, 2008:2872 - 2878.
  • 10王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报,2002,30(10):1417-1420. 被引量:151

二级参考文献9

  • 1Fisher R.A.Contributions to Mathematical Statistics [M].New York:J.Wiley,1952.
  • 2陈季镐(美)著,邱炳章,邱华译.统计模式识别 [M].北京:北京邮电学院出版社,1989.
  • 3Vapnik V.N and Chervonenkis A.Ja.Theory of Pattern Recognition [M].Nauka,Moscow,1974.
  • 4Boser B,Guyon I and Vapnik V.N.A training algorithm for optimal margin classifirers [A].Fifth Annual Workshop on Computational Learning Teory [C].Pittsburgh:ACM,1992.144-152.
  • 5A D 亚历山大洛夫等著,王元等译.数学--它的内容、方法和意义 [M].北京:科学出版社,2001.
  • 6Ryszard Engelking.Dimension Theory [M].PWN-Polish Scientific Publishers-Warszawa,1978.
  • 7VladimirNVapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000,9..
  • 8王守觉,李兆洲,陈向东,王柏南.通用神经网络硬件中神经元基本数学模型的讨论[J].电子学报,2001,29(5):577-580. 被引量:45
  • 9王守觉,王柏南.人工神经网络的多维空间几何分析及其理论[J].电子学报,2002,30(1):1-4. 被引量:87

共引文献150

同被引文献83

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部