期刊文献+

仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用 被引量:151

Bionic (Topological) Pattern Recognition——A New Model of Pattern Recognition Theory and Its Applications
在线阅读 下载PDF
导出
摘要 本文提出了一种模式识别理论的新模型 ,它是基于“认识”事物而不是基于“区分”事物为目的 .与传统以“最佳划分”为目标的统计模式识别相比 ,它更接近于人类“认识”事物的特性 ,故称为“仿生模式识别” .它的数学方法在于研究特征空间中样本集合的拓扑性质 ,故亦称作“拓扑模式识别” .“拓扑模式识别”的理论基点在于它确认了特征空间中同类样本的连续性 (不能分裂成两个彼此不邻接的部分 )特性 .文中用“仿生模式识别”理论及其“高维空间复杂几何形体覆盖神经网络”识别方法 ,对地平面刚体目标全方位识别问题作了实验 .对各种形状相像的动物及车辆模型作全方位 880 0次识别 ,结果正确识别率为 99 75 % ,错误识别率与拒识率分别为 0与 0 2 5 % . A new model of pattern recognition principles was proposed, based on matter cognition instead of matter classification in traditional statistical pattern recognition. This model is closer to the function of human being than traditional statistical pattern recognition using optimal separation as main principle. So this model is called the bionic pattern recognition, while its mathematical basis is topological analysis of sample set in the high dimensional feature space, therefore it is also called the topological pattern recognition. The basic idea of this model is based on the continuity in the feature space of similar kinds of samples. Experiments on recognition of omnidirectional rigid objects on the same level were carried out with this model using neural network. Covering the high dimensional geometrical distribution of sample set in the feature space. Many animal and vehicle models (even with similar shapes) were recognized omnidirectionally in 8800 tests, showing that the correct recognition rate is 99.75%, while the error rate and the rejection rate are 0 and 0.25% respectively.
作者 王守觉
出处 《电子学报》 EI CAS CSCD 北大核心 2002年第10期1417-1420,共4页 Acta Electronica Sinica
基金 国家自然科学基金项目 (No 60 1 350 1 0 )
关键词 模式识别 神经网络 仿生学 高维几何 仿生模式识别 拓扑模式识别 Bionics Neural networks Statistics Topology
  • 相关文献

参考文献9

  • 1Fisher R.A.Contributions to Mathematical Statistics [M].New York:J.Wiley,1952.
  • 2陈季镐(美)著,邱炳章,邱华译.统计模式识别 [M].北京:北京邮电学院出版社,1989.
  • 3Vapnik V.N and Chervonenkis A.Ja.Theory of Pattern Recognition [M].Nauka,Moscow,1974.
  • 4Boser B,Guyon I and Vapnik V.N.A training algorithm for optimal margin classifirers [A].Fifth Annual Workshop on Computational Learning Teory [C].Pittsburgh:ACM,1992.144-152.
  • 5VladimirNVapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000,9..
  • 6A D 亚历山大洛夫等著,王元等译.数学--它的内容、方法和意义 [M].北京:科学出版社,2001.
  • 7Ryszard Engelking.Dimension Theory [M].PWN-Polish Scientific Publishers-Warszawa,1978.
  • 8王守觉,李兆洲,陈向东,王柏南.通用神经网络硬件中神经元基本数学模型的讨论[J].电子学报,2001,29(5):577-580. 被引量:45
  • 9王守觉,王柏南.人工神经网络的多维空间几何分析及其理论[J].电子学报,2002,30(1):1-4. 被引量:87

二级参考文献4

共引文献121

同被引文献1198

引证文献151

二级引证文献1142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部