摘要
                
                    应用两种半解析数值方法即康脱洛维奇法和线法,对文献[1]中的高梯度问题进行了数值求解,获得了令人满意的结果。特别在后一方法中首次尝试了“子结构法”,结果,在计算精度和计算效率方面都取得了显著的改进。因此,这一可行性研究的成果,对于突破当前国际上热门的“应变局部化”所导致的“剪切带”中高梯度变形的研究现状,提供了新的思路。
                
                In this paper,the two semi-analytic numerical methods,i.e. Kantorovich methodand MOL,are applied to the high gradient problems in [1]. The obtained numerical resultsare satisfactory. In particular,we have tried the combination of the multi-sub-structuremethod and MOL. As a result,the precision of the numerical results and the efficiency ofthe solution are improved greatly. Therefore, the results of this feasibility study provide anew promising approach to tackle the high gradient deformation in“the shear band”of“thestrain localization”which has received much attention of the researchers now.
    
    
    
    
                出处
                
                    《力学学报》
                        
                                EI
                                CSCD
                                北大核心
                        
                    
                        1995年第S1期74-80,共7页
                    
                
                    Chinese Journal of Theoretical and Applied Mechanics
     
    
                关键词
                    半解析数值法
                    康脱洛维奇法
                    线法
                    高梯度问题
                    应变局部化
                
                        semi-analytic numerical methods,Kantorovich method, MOL, high gradientproblems, the strain localization