期刊文献+

滑模变结构法实现旋转圆盘混沌振动的控制 被引量:6

Sliding mode control of chaotic vibrations of spinning disks
在线阅读 下载PDF
导出
摘要 为了消除旋转圆盘横向混沌振动,克服其对整个系统及工作状况的不利影响,对旋转圆盘横向振动的四维非线性方程进行了复杂动力学特征分析,包括相轨迹图、Lyapunov指数和庞加莱映射图。利用比例积分滑模变结构法,将旋转圆盘从其横向混沌振动的混沌轨道先后控制到任意固定点和周期轨道,并用MATLAB模拟验证其有效性。重点讨论了滑模变结构方法的增益系数对抖振问题、受控系统的过渡过程的时间、峰值和控制器的过渡时间、峰值和稳定后的状态及其上下界的影响。结果为比例积分滑模变结构法的应用和相关机械系统混沌态的有效控制提供了理论依据。 In order to eliminate lateral oscillations of spinning disks and dispel their adverse effect on the system performance or the working conditions of the system,the chaotic complex dynamic characteristics of the four-dimensional nonlinear equations of lateral oscillations of spinning disks were analysed,including the space trajectory,the Lyapunov exponent and the Poincare map.These characteristics indicate that the four-dimensional dynamical system contains chaotic attractor.For overcoming the shortcomings that the system can never be controlled to reach target orbit precisely in feedback control theory,the chaotic orbits of the spinning disks were stabilized to approach arbitrary chosen fixed points and periodic orbits by means of sliding mode method,and MATLAB simulations were presented to confirm the validity of the controller.The results show that using sliding mode method can control the chaotic orbits of the rotating disks to any fixed points and periodic orbits strictly.The control process can make the system track target orbit smoothly in short transition time,and provides reference to relevant chaos control in mechanical system.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第9期248-252,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(50879072) 校人才专项基金(RCZX-2009-01)资助项目
关键词 旋转圆盘 混沌 奇怪吸引子 比例积分滑模变结构 固定点 周期轨道 spinning disks chaos chaotic attractor sliding mode fixed point periodic orbit
作者简介 陈帝伊,男,博士生,1982年生。 通讯作者,马孝义,男,博士,教授,1965年生。
  • 相关文献

参考文献11

  • 1Raman A, Mote Jr C D. Remarks on the nonlinear vibration of an axisymmetric circular disk near critical speed [ J ]. International Journal of Nonlinear Mechanics, 2002, 37: 35 -41.
  • 2Salarieh H, Sadeghian H, Merat K. Chaos control in lateral oscillations of spinning disks via nonlinear feedback [J]. Nonlinear Analysis : Real World Applications, 2009, 10 : 2864 - 2872.
  • 3申滔,陈帝伊,马孝义,陈海涛.圆柱罐中液体振动的混沌分析及滑模变结构控制[J].水利与建筑工程学报,2010,8(6):76-80. 被引量:2
  • 4De Paula A S, Savi M A. A multiparameter chaos control method based on OGY approach [J]. Chaos, Solitons & Fractals, 2009, 40(3) : 1376 - 1390.
  • 5董小闵 余森 廖昌荣 等.具有非线性时滞的汽车磁流变悬架系统自适应模糊滑模控制.振动与冲击,2009,28(11):55-60,203.
  • 6陈帝伊,石琳,马孝义,陈海涛.一类离心轮系统的混沌数学模型及其线性反馈控制[J].中国机械工程,2010,21(24):2932-2936. 被引量:4
  • 7陈帝伊,陈海涛,马孝义,龙燕.只含一个非线性项的超混沌系统及其控制比较[J].计算机应用,2010,30(8):2045-2048. 被引量:6
  • 8Ataei M, Kiyoumarsi A, Ghorbani B. Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement[ J]. Physics Letters A, 2010, 374(41 ) : 4226 -4230.
  • 9Salarieh H, Alasty A. Control of chaos in atomic force microscopes using delayed feedback based on entropy minimization[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 ( 3 ) : 637 - 644.
  • 10Wang C C, Pa N S, Yau H T. Chaos control in AFM system using sliding mode control by backstepping design [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3) : 741 - 751.

二级参考文献35

  • 1王发强,刘崇新.Liu混沌系统的线性反馈同步控制及电路实验的研究[J].物理学报,2006,55(10):5055-5060. 被引量:35
  • 2CHEN G R,UETA T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465 -1466.
  • 3Lü J H,CHEN G R.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos,2002,12(3):659-661.
  • 4LIU C X,LIU L,UU T,et al.A new butterfly-shaped attractor of Lorenz-like system[J].Chaos,Solitons and Fractals,2006,28(5):1196-1203.
  • 5WANG C C,PAI N S,YAU H T.Chaos control in AFM system using sliding mode control by backstep-ping design[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(3):741 -751.
  • 6董小闵 余森 廖昌荣 等.具有非线性时滞的汽车磁流变悬架系统自适应模糊滑模控制.振动与冲击,2009,28(11):55-60,203.
  • 7SALARIEH H,SADEGHIAN H A,MERAT K H.Chaos control in lateral oscillations of spinning disks via nonlinear feedback[J].Nonlinear Analysis:Real World Applications,2009,(10):2864 -2872.
  • 8CAFAGNA G G.New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring[J].International Journal Bifurcation and Chaos,2003,13(10):2889-2093.
  • 9MATSUMOTO T,CHUA L O,KOBAYASHI K.Hyperchaos:Laboratory experiment and numerical comfirmation[J].IEEE Transactions on Circuits and Systems,1986,33(11):1143-1147.
  • 10Jeonq Kyeong-Hoon,Lee Gyu-Mahn,Kim Tae-Wan.Free vibration analysis of circular plate partially in contact with a liquid[J].Journal of Sound and Vibration,2009,324(10):194-208.

共引文献13

同被引文献47

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部