期刊文献+

水热法合成LiFePO_4的掺碳改性研究 被引量:4

Study on the Electrochemical Characteristics of Hydrothermally Prepared LiFePO_4 Followed by Carbon Coating
在线阅读 下载PDF
导出
摘要 以LiOH、FeSO4和H3PO4为原料,采用水热法合成了结晶性良好的LiFePO4颗粒。在此基础上,以葡萄糖为碳源,掺入不同量的碳,形成LiFePO4/C复合材料。样品经过XRD、SEM、恒流充放电测试、EIS表征,结果表明,掺碳提高了LiFePO4的比容量、循环性能和锂离子的扩散动力学性能。电化学测试表明,LiFePO4/C放电比容量开始随着碳含量的增加而上升,随后降低。其中,3%碳含量的LiFePO4/C样品具有最佳的放电性能,0.1C倍率下达到145mAh/g,0.2C倍率下达到142mAh/g,50次循环后仅衰减0.7%。 The olivine-type LiFePO4/C cathode materials were prepared via hydrothermal reaction using LiOH, FeSO4 and H3 PO4 as raw materials and different contents of glucose as the carbon source. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), constant current charge-discharge cycling test and and electrochemical impedance spectroscopy(EIS). The results indicate that carbon adding improves the capacity, cycle stability and lithium ion diffusion kinetics of LiFePO4. Electrochemical tests show that the discharge capacity first increases and then decreases with the increase of carbon content. The optimal sample LiFePO4/C with 3wt% carbon exhibites the highest discharge capacity of 145mAh/g at 0. 1C rate, 142mAh/g at 0. 2C rate, after 50 cycles, capacity fade was only 0. 7%.
出处 《材料导报》 EI CAS CSCD 北大核心 2011年第18期66-69,共4页 Materials Reports
基金 国家自然科学基金(20803042)
关键词 水热法 磷酸铁锂 包碳 hydrothermal reaction, LiFePO4, carbon coating
作者简介 彭行圆:男,1987年生,硕士研究生,研究方向为锂离子正极材料Tel:027—87558237E-mail:xingyuanp@163.com 黄云辉:通讯作者,男,教授Tel:027-87558241E-mail:huangyh@mail.hust.edu.cn
  • 相关文献

参考文献18

  • 1Padhi A K, Nanjiundaswmay K S, Goodenough J B, et al. Phospho-olivines as positive-electrode materials for re- chargeable lithium batteries[J]. J Electochem Soc,1997,144 (4) :1188.
  • 2Andersson A S, Thomas J O. The source of first-cycle ca- pacity loss in LiFePO4 [J]. J Power Sources, 2001,97-98: 498.
  • 3Yun N J, Ha H W, Jeong K H, et al. Synthesis and elec- trochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-contai- ning precursor[J]. J Power Sources,2006,160(2): 1361.
  • 4Huang H, Yin S C, Nazar L Fo Approaching theoretical ca- pacity of LiFePO4 at room temperature at high rates[J]. Electroehem Solid-State Lett, 2001,4 (10 ) :A170.
  • 5Salah A A, Mauger A, Zaghib K, et al. Reduction Fe^3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition[J]. J Electrochem Soc, 2006,153 (9) :A1692.
  • 6Liu H, Fu L J, Zhang H P, et al. Effects of carbon coa- tings on nanocomposite electrodes for lithium-ion batteries [J]. Electrochem Solid-State Lett, 2006,9 (12) : A529.
  • 7Takeuchi T, Tabuchi M, Nakashima A, et al. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process[J]. J Power Sources, 2005, 146(1-2) : 575.
  • 8Chung S Y, Bloking J T, Chiang Y M. Electronically con- ductive phospho-olivines as lithium storage electrodes[J]. Nature Mater, 2002,1 (2): 123.
  • 9Wang G X, Bewlay S, Yao J, et al. Characterization of LiMxFe1-xPO4 (M= Mg, Zr, Ti) cathode materials pre- pared by the sol-gel method[J]. Electrochem Solid-State Lett, 2004,7(12) :A503.
  • 10Cho T H, Chung H T. Synthesis of olivine-type LiFePO4 by emulsion-drying method [J]. J Power Sources, 2004, 133(2):272.

同被引文献51

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部