期刊文献+

一种改进的基于地面反作用力的步态识别方法 被引量:15

An Improved Gait Recognition Method Based on Ground Reaction Force
原文传递
导出
摘要 提出一种改进的基于地面反作用力的步态识别方法.该方法通过由三维测力台构建的步态通道获取步行时足底受到的三方向地面反作用力,并采用小波包分解提取时频域特征,利用模糊C-均值聚类算法从中挑选出最具分类能力的特征子集,最后在训练样本上用支持向量机训练分类器,并在测试集上进行步态识别.为提高识别率,对样本进行拆分和波形对齐操作,并设计多分类器以降低步行速度变化对识别准确率的影响.在103人的步态数据库上的测试结果表明,该方法即使在训练样本较少的情况下也可以得到较高的识别率. An improved gait recognition approach based on ground reaction force (GRF) is proposed. 3-directional GRF are acquired by 3-dimensional force plate while a person is walking through the gait walkway. Wavelet packet (WP) decomposition is used to extract features in time-frequency domain, and optimal feature subset is selected using a fuzzy c-means (FCM) clustering algorithm. Support vector machine (SVM) classifier is trained on training-set, and then gait recognition is implemented by SVM on testingset. In order to improve the recognition accuracy, waveform alignment and re-sampling approach are utilized. Multiple classifiers are designed to reduce the negative influence of changes in walking speed. The approach is tested on a gait database collected from 103 subjects. Comparative results demonstrate that high recognition accuracy can be reached even in fewer training-samples.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第3期353-359,共7页 Pattern Recognition and Artificial Intelligence
基金 中国科学院合肥物质科学研究院院长基金(基于步态触觉信息的生物特征识别方法研究 0722B11141)
关键词 步态识别 地面反作用力 小波包分解 模糊C-均值 多分类器 Gait Recognition, Ground Reaction Force, Wavelet Packet Decomposition, Fuzzy C-Means, Multiple Classifiers
作者简介 林尔东,男,1986年生,硕士,主要研究方向为模式识别.E-mail:lined8963@gmail.com. 姚志明,男,1983年生,博士,主要研究方向为运动生物力学与模式识别. 孙怡宁,男,1963年生,教授,博士生导师,主要研究方向为传感技术、运动生物力学、系统集成.E-mail:ynsun@iim.ac.cn.
  • 相关文献

参考文献10

  • 1Murray M P. Gait as a Total Pattern of Movement. American Journal of Physical Medicine, 1967, 46 ( 1 ) : 290 - 332.
  • 2Zhao Guoying, Chen Rui, Liu Guoyin, et al. Amplitude Spectrum- Based Gait Recognition// Proc of the 6th International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004: 23 - 28.
  • 3Boulqouris N V, Chi Zhiwei. Gait Recognition Using Radon Transform and Linear Discriminant Analysis. IEEE Trans on Image Processing, 2007, 16(3) : 731 -740.
  • 4BenAbdelkader C, Cutler R G, Davis L S. Gait Recognition Using Image Self-Similarity. EURASIP Journal on Applied Signal Process- ing, 2004, (4) : 572 -585.
  • 5Han Ju, Bhanu B. Individual Recognition Using Gait Energy Image. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 (2) : 316 -322.
  • 6王海晖,彭嘉雄,李峰.基于遥感图像融合的目标检测算法[J].模式识别与人工智能,2001,14(4):454-457. 被引量:2
  • 7Li D, Pedrycz W, Pizzi N J. Fuzzy Wavelet Packet Based Feature Extraction Method and Its Application to Biomedical Signal Classifi- cation. IEEE Trans on Biomedical Engineering, 2005, 52 (6):1132 -1139.
  • 8陶卿,姚穗,范劲松,方廷健.一种新的机器学习算法:Support Vector Machines[J].模式识别与人工智能,2000,13(3):285-290. 被引量:30
  • 9Moustakidis S P, Theocharis J B, Giabas G. Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals. IEEE Trans on Systems, Man and Cybernetics, 2008, 38(6) : 1476 - 1485.
  • 10Xu Su, Zhou Xu, Sun Yining. A Genetic Algorithm-Based Feature Selection Method for Human Identification Based on Ground Reaction Force// Proc of the 1 st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai, China, 2009:665-670.

二级参考文献9

  • 1陶卿.基于约束区域的神经网络模型及其在优化和联想记忆中的应用:中国科学技术大学博士学位论文[M].,1999..
  • 2Cao Jinde,Journal of COmputer and System Sciences,2000年,60卷,1期,179页
  • 3Xia Y,IEEE Trans Neural Networks,1996年,7卷,6期,1544页
  • 4崔屹,图像处理与分析.数学形态学方法及应用,2000年
  • 5程正兴,波波分析算法与应用,1998年
  • 6Jiang X,Proc SPIE,1996年,2898卷,35页
  • 7崔锦泰,小波分析导论,1995年
  • 8陶卿,方廷健,孙德敏.基于约束区域的连续时间联想记忆神经网络[J].计算机学报,1999,22(12):1253-1258. 被引量:4
  • 9陶卿,方廷健.求解约束Minimax问题的神经网络模型[J].控制理论与应用,2000,17(1):82-84. 被引量:2

共引文献30

同被引文献150

引证文献15

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部