期刊文献+

关于正整数的k次幂加法补数 被引量:2

On the Additive k-th Power Complements
在线阅读 下载PDF
导出
摘要 设n是正整数,定义a(n)为n的k次幂加法补数.利用初等和解析方法研究了数列{a(n)}的性质,并给出了Ω(n+a(n))与ω(n+a(n))的渐近公式. For any positive integer n,let a(n)denotes the additive k-th power complements of n.The main pur-pose of this paper is using the analytic and elementary methods to study the proper-ties of the sequences{a(n)},and two asymptotic formulas of (n+a(n)) and w(n+a(n)) are obtained.
作者 王明军
出处 《河南科学》 2011年第6期648-650,共3页 Henan Science
基金 陕西省教育厅科研基金项目(2010JK540) 渭南师范学院基础数学重点学科项目
关键词 k次幂部分 均值 渐近公式 Additive k-th power complements mean value asymptotic formula
作者简介 王明车(1972-),男,陕西合阳人,讲师,理学硕士,研究方向为数论.
  • 相关文献

参考文献5

  • 1Smarandache F. Only Problems, Not solutions[M]. Chicago: Xiquan Pub1 House, 1993.
  • 2Xu Zhefeng. On the additive k-power complements[M]//Research on Smarandache Problems in Number Theory,Phoenix: Hexis Poblishing House, 2004:13-16.
  • 3杨存典,刘端森,李军庄.关于k次加法补函数的因子函数的均值公式[J].纯粹数学与应用数学,2007,23(3):347-350. 被引量:4
  • 4Hardy G H, Ramanujan S. The normal number of prime factors of a number n [J]. Quarterly Journal, Mathematics, 1917,48: 76-92.
  • 5Apostol T M. Introduction to analytic number theory [M'I. New York: Spring-Verlag, 1976.

二级参考文献5

  • 1Yi yuan.On the asymptotic property of divisor function for additive complement[J].Research on Smarandache Problems in Number Theory,2004,1:65-68.
  • 2Xu Zhefeng.On the additive k-power complements[J].Research on Smarandache Problems in Number Theory,2004,1:13-16.
  • 3Zhu weiyi.On the k-power complement and k-free number sequence[J].Smarandache Notion Journal,2004,14:66-69.
  • 4Yao wili.On the k-power complements sequence[J].Smarandache Notion Journal,2004,14:271-273.
  • 5Pan Chengdong,Pan Chengbiao.The Elementary Number Theory[M].Bijing:Beiijng University Press,2003.

共引文献3

同被引文献12

  • 1朱伟义.关于整数n的k次补数[J].数学学报(中文版),2005,48(4):817-820. 被引量:14
  • 2张德瑜,翟文广.关于整数n的k次补数[J].山东大学学报(理学版),2006,41(5):4-6. 被引量:7
  • 3李静.一个包含k次补数的方程[J].数学的实践与认识,2007,37(9):172-175. 被引量:4
  • 4Xu Zhefeng. On the additive k-th power complements[M]//Research on Smarandache Problems in Number Theory, Phoenix, USA: Hexis, 2004: 13-16.
  • 5Apostol T M. Introduction to analytic number theory[M]. New York: Springer-Verlag, 1976: 134-170.
  • 6Apostol T M. Introduction to analytic number theory [M]. New York: Springer-Verlag, 1976.
  • 7Smarandache F. Only problems, not solutions[M]. Chicago: Xiquan Publishing House, 1993.
  • 8Lou Yuanshui. On the additivek-th power complements [J]. Smarandache Notions Journal, 2004, 14: 227-229.
  • 9Yao Weili. On the k-th power complement sequence [C]//Zhang Wenpeng. Research on Smarandache Problems in Number Theory. Hexis, 2004: 43-46.
  • 10Russo F. An introduction to the Smarandache square complementary function[J]. Smarandache Notions Journal, 2002, 13: 160-173.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部