期刊文献+

关于k次加法补函数的因子函数的均值公式 被引量:4

On the mean value of divisor function for k-power additive complements function
在线阅读 下载PDF
导出
摘要 对于任意正整数n,如果m+n是完全k次方数,称最小非负整数m是n的k次加法补.为了研究m的性质及变化规律,这里运用初等数论和分析数论的方法,得到了d(n+ak(n))的一个有趣的均值公式,从而得到了更一般的加法补函数的计算公式,完善了加法补函数在数论中的研究和应用. As to arbitrary positive integer n, if rn + n is complete k power number, the smallest negative integer rn is defined as k power complement. In order to study the properties and laws of rn ,the primary number theory and analytic number theory is applied and an interesting mean value formula of d (n + ak (n)) is obtained, from which, a more common addition complementary function is obtained, thus enriching the study and application of addition complementary function.
机构地区 商洛学院数学系
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第3期347-350,共4页 Pure and Applied Mathematics
基金 国家自然科学基金资助项目(10671155) 陕西省专项计划科研项目(04JK132)
关键词 补函数 因子函数 性质 均值公式 complements function,divisor function, properties ,mean value formula
作者简介 杨存典(1965-),副教授,研究方向:数论.
  • 相关文献

参考文献5

  • 1Yi yuan.On the asymptotic property of divisor function for additive complement[J].Research on Smarandache Problems in Number Theory,2004,1:65-68.
  • 2Xu Zhefeng.On the additive k-power complements[J].Research on Smarandache Problems in Number Theory,2004,1:13-16.
  • 3Zhu weiyi.On the k-power complement and k-free number sequence[J].Smarandache Notion Journal,2004,14:66-69.
  • 4Yao wili.On the k-power complements sequence[J].Smarandache Notion Journal,2004,14:271-273.
  • 5Pan Chengdong,Pan Chengbiao.The Elementary Number Theory[M].Bijing:Beiijng University Press,2003.

同被引文献23

  • 1朱伟义.关于整数n的k次补数[J].数学学报(中文版),2005,48(4):817-820. 被引量:14
  • 2张德瑜,翟文广.关于整数n的k次补数[J].山东大学学报(理学版),2006,41(5):4-6. 被引量:7
  • 3潘承洞,潘承彪.解析函数论基础[M].北京:科学出版社,1997.
  • 4SMARANDACHE F. Only Problem, Not solutions [ M ]. Chicago : Xiquan Publishing House, 1993.
  • 5XU Zhe-feng. On the additive k-power complements: Research on Smarandache Problems in Number Theory, Xi'an, February 11 - 14,2004[C]. USA: Hexis,2004.
  • 6HARDY G H, RANLNANUJAN S. The normal number of prime factors of a number n [ J ]. Quarterly Journal Mathematics : 1917(48) :78 -92.
  • 7ZHANG Xiao-beng, LOU Yuan-bing. The Smarandache irrational root sieve sequences :Research on Smarandache Problems in Number Theory, Xi'an, February 11 - 14,2004 [ C ]. USA : Hexis ,2004.
  • 8LIU Hong-yan, LIU Yuan-bing. A note on the 29th Smarandaches problem [J]. Smarandache Notions Journal, 2004(14) : 156 - 158.
  • 9Smarandache F. Only Problems, Not Solutions[ M ]. Chicago:Xiquan Publishing House, 1993.55-56.
  • 10Lv Chuan. A Number Theoretic Function and Its Mean Value [ M ]. Research on Smarandache Problems in Number Theory. Phoenix, USA, Hexis ,2004.33-36.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部