期刊文献+

基于相场方法的铁基合金高温氧化与生长应力分析 被引量:4

Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method
在线阅读 下载PDF
导出
摘要 高温氧化性能是评价热防护材料的一项重要指标,然而由于氧化过程是一个含微结构演化的复杂过程,其定量计算分析一直是研究的难点.基于材料热力学理论,建立了能够考虑微结构演化的相场方法来模拟材料的高温氧化,从而解决了抗氧化性能与氧化生长应力定量计算分析的问题.采用所建立的相场方法,对Fe-Cr-Al-Y合金的高温扩散过程、氧化性能和生长应力演化进行了计算,数值计算结果与文献中的实验结果吻合良好,计算结果还揭示了最大生长应力和外界环境氧浓度之间的线性关系.所发展的相场方法为研究复杂环境下的高温氧化提供了一种有力的计算分析手段. High-temperature oxidation was an important property to evaluate the thermal protection materials. However, as oxidation was a complex process involving microstructure evolution, its quantitative analysis had always been a challenge issue. A phase field method based on thermodynamics theory was developed to simulate oxidation behavior and oxidation induced growth stress. It involves microstructure evolution, and solves the problem of quantitatively computational analysis for oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance and stress evolution were predicted for Fe-Cr-A1-Y alloys. Numerical results agree with experiment data well. The linear relationship between maximum growth stress and the environment oxygen concentration is found. This phase field method provides a powerful tool to investigate high temperature oxidation in complex enviroltment.
出处 《应用数学和力学》 CSCD 北大核心 2011年第6期710-717,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(9050501510702035)
关键词 高温 氧化 相场方法(PFM) 生长应力 high-temperature oxidation phase field method(PFM) growth stress
作者简介 杨帆(198l-),男,吉林人,博士生(E-mail:fan-yang06@mails.tsinghua.edu.cn) 方岱宁,教授(联系人.E-mail..fangdn@mail.tsinghua.edu.cn).
  • 相关文献

参考文献2

二级参考文献50

  • 1Wang, C.R., Yang, J.M., Hoffman, W.R: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74(3), 272-281 (2002).
  • 2Gasch, M., Elierby, D., Irby, E., Beckman, S., Gusman, M., Johnson, S.: Processing, properties and arc-jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. J. Mater. Sei. 39, 5925-5937 (2004).
  • 3Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., Causey, S.J.: Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19(13-14), 2405-2414 (1999).
  • 4Bull, J., White, M.J., Kaufman, L.: Ablation resistant zirconium and hafnium ceramics. US Patent 5,750,450 (1998).
  • 5Wuchina, E., Opeka, M., Causey, S., Buesking, K., Spain, J., Cull, A., Routbort, J., Guitierrez-mora, E: Designing for ultrahigh- temperature applications: The mechanical and thermal properties of HfB2, HfCxHfNx and αHf(N). J. Mater. Sci. 39, 5939-5949 (2004).
  • 6Song, G.M., Zhou, Y., Kang, S.J.: Experimental description of thermomechanical properties of carbon fiber-reinforced TiC matrix composites. Mater. Des. 24(8), 639-646 (2003).
  • 7Melendez-Martinez, J.J., Dominguez-Rodriguez, A., Monteverde, E, Melandri, C., De Portu, G.: Characterisation and high temperature mechanical properties of zirconium boride-based materials. J. Eur. Ceram. Soc. 22(14-15), 2543-2549 (2002).
  • 8Kinoshiya, T., Munekawa, S., Tanaka, S.I.: Effect of grain boundary segregation on high-temperature strength of hot-pressed silicon carbide. Acta Materialia 45(2), 801-809 (1997).
  • 9Kim, Y.W., Chun, Y.S., Nishimura, T., Mitomo, M., Lee, Y.H.: High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride. Acta Materialia 55(2), 727-736 (2007).
  • 10Fahrenholtz, W.G., Hilmas, G.E., Chamberlain, A.L., Zimmermann, J.W.: Processing and characterization of ZrB2-based ultrahigh temperature monolithic and fibrous monolithic ceramics. J. Mater. Sci. 39, 5951-5957 (2004).

共引文献18

同被引文献38

  • 1刘军,熊翔,王建营,黄伯云.耐超高温材料研究[J].宇航材料工艺,2005,35(1):6-9. 被引量:19
  • 2韩杰才,赫晓东,杜善义,刘连元,万捷.多向碳/碳复合材料超高温力学性能测试技术研究[J].宇航学报,1994,15(4):17-23. 被引量:5
  • 3李金平,孟松鹤,韩杰才,易法军,许承海.双相颗粒混合增韧ZrB_2陶瓷复合材料的研究[J].哈尔滨工业大学学报,2005,37(6):727-729. 被引量:12
  • 4Hille T S,Turteltaub S,Suiker A S J.Oxide grown and damage evolution in thermal barrier coatings[J].Engineering Fracture Mechanics,2011,78(10):2139-2152.
  • 5Clarke D R,Oechsner M,Padture N P.Thermal barrier coatings for more efficient gas-turbine engines[J].Materials Research Society,2012,37(10):891-898.
  • 6Belle W,Marijnissen G,Van Lieshout A.The evolution of thermal barrier coatings-status and upcoming solutions for today's key issues[J].Surface and Coatings Technology,1999,120:61-67.
  • 7Miller R A.Current status of thermal barrier coatings-an overview[J].Surface and Coatings Technology,1987,30(1):1-11.
  • 8Karlsson A M,Hutchinson J W,Evans A G.A fundamental model of cyclic instabilities in thermal barrier systems[J].Journal of the Mechanics and Physics of Solids,2002,50(8):1565-1589.
  • 9HUANG Ming,LI Yue-ming.X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials[J].Computational Materials Science,2013,67:63-72.
  • 10Ulm F J,Coussy O,Li K F,Larive C.Thermal-chemo-mechanics of ASR-expansion in concrete structures[J].Journal of Engineering Mechanics-ASCE,2000,126(3):233-242.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部