期刊文献+

原子荧光光度法测定天然水体中的Sb(V)和Sb(Ⅲ) 被引量:2

Determination of major antimony species (Sb(V) and Sb(Ⅲ)) in natural water by hydride generation atomic fluorescence spectrometry
在线阅读 下载PDF
导出
摘要 采用氢化物-原子荧光光度法(HG-AFS),测定天然水体中的总溶解态无机锑(Sb(Ⅴ+Ⅲ))和三价锑(Sb(Ⅲ))。选择的最佳仪器条件为:灯电流60 mA,负高压-260 V,原子化器的温度190℃和氩气的载气流量600 mL/min。Sb(Ⅴ+Ⅲ)在1 mol/L HCl介质中进行测定,检出限为0.024μg/L,线性范围为0~14μg/L。对浓度0.3μg/L和0.03μg/L的样品分析精密度分别为2.0%和1.9%(n=9),方法的回收率93.7%~105%。Sb(Ⅲ)是在柠檬酸和柠檬酸钠缓冲溶液中(pH为4.0~4.5),辅以100 mL/min的氢气进行测定,测得检出限为0.0013μg/L,对浓度0.04μg/L和0.01μg/L的样品分析精密度分别为3.8%和5.5%(n=9),方法的回收率91.1%~104%。二者在不同介质中工作曲线的斜率变动范围均小于5%。Sb(Ⅴ)的含量由总溶解态无机锑与三价锑的含量差减得到。 A method for the determination of Sb (V +III) and Sb (III) by atomic fluorescence spectrometry (AFS) in natural water was established in this study. The optimal instrumental parameters were electric current, 60 mA; voltage, -260 V; temperature, 190℃; and Ar flux, 600 mL/min. The method was based on the behavior of total antimony (Sb(V+III)) and antimony (III) under different acidic conditions. Total antimony was determined at 1 mol/L HCl; and antimony (III) was determined at pH =4.0-4.5. Under optimized conditions, the detection limit (30) for Sb (V+III) and Sb(III) were 0.024 μg/L and 0.0013 μg/L, respectively. For total antimony, the precision for the sample of 0.3 μg/L or 0.03 μg/L was 1.95% or 1.92%, respectively (n = 9). The linearity was 0-14μg/L. For antimony (III), the precision for the sample of 0.04 μg/L or 0.01 μg/L are 3.8% or 5.5%, respectively (n = 9). The recoveries for Sb(V+III) and Sb(III) are 93.7%-105% and 91.1% -104%, respectively. The method can be used directly to the determination of Sb (V+III) and Sb (III) in natural water.
出处 《海洋科学》 CAS CSCD 北大核心 2011年第4期37-43,共7页 Marine Sciences
基金 国家重点基础研究发展规划项目(2006CB400601) 国家自然科学青年基金项目(40606028)
关键词 原子荧光光度法 Sb(V) SB(III) 天然水体 Atomic fluorescence spectrometry Sb(V) Sb(III) natural water
作者简介 万玉霞(1983-),女,山东青岛人,硕士研究生,主要从事海洋生物地球化学研究,E-mail:yuxiawan@yeah.net; 任景玲,通信作者,电话:13573866779,E-mail:renjing1@ouc.edu.cn
  • 相关文献

参考文献13

  • 1客绍英,石洪凌,刘冬莲.锑的污染及其毒性效应和生物有效性[J].化学世界,2005,46(6):382-384. 被引量:48
  • 2何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性[J].化学进展,2004,16(1):131-135. 被引量:193
  • 3Cutter G, Cutter L.Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean[J]. Marine Chemistry, 1995, 49(4): 295-306.
  • 4Cutter G, Cutter L. Metalloids in the high latitude North Atlantic Ocean: Sources and internal cycling[J]. Marine Chemistry, 1998, 61(1-2): 25-36.
  • 5Andreae M, Froelich P. Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea[J]. Tellus Series B, Chemical and physical meteorology, 1984, 36(2): 101-117.
  • 6Cutter G. Dissolved arsenic and antimony in the Black Sea. Deep-sea research. Part A[J]. Oceanographic research papers, 1991, 38(2): 825-843.
  • 7Filella M. Williams P.Belzile N. Antimony in the environment: knowns and unknowns[J]. Environ Chem,2009, 6: 95-105.
  • 8Filella M, Belzile N, Chen Y. Antimony in the envi- ronment: a review focused on natural waters I. Occur- rence[J]. Earth Science Reviews, 2002, 57(1-2): 125-176.
  • 9Ainsworth N, Cooke J.. Johnson M. Distribution of antimony in contaminated grassland: l--Vegetation and soils[J]. Environmental Pollution (Barking, Essex 1987), 1990, 65(1): 65.
  • 10Krachler M. Emons H. Potential of high performance liquid chromatography coupled to flow injection hydride generation atomic absorption spectrometry for the speciation of inorganic and organic antimony compounds[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(3): 281-285.

二级参考文献12

共引文献224

同被引文献46

  • 1杨莉丽,康海彦,张德强,李娜,高丽荣.树脂预分离氢化物-原子荧光光谱法测定水中的As(Ⅲ)和As(Ⅴ)[J].分析试验室,2004,23(8):44-47. 被引量:20
  • 2谷国传,胡方西,胡辉,李兴华,韩明宝.长江口外高盐水入侵分析[J].东海海洋,1994,12(3):1-11. 被引量:19
  • 3韦昌金,刘霁欣.离子色谱氢化物发生原子荧光法测定地下水中砷形态[J].现代仪器,2006,12(4):31-34. 被引量:12
  • 4李绍南,陈洪.环境监测中的元素形态和形态分析[J].有色金属分析通讯,1998(6):33-36.
  • 5SANCHEZ-RODAS D,CORNS W T,CHEN B,et al. Atomicfluorescence spectrometry : a suitable detection technique in specia-tion studies for arsenic, selenium, antimony and mercury [J].journal of analytical atomic spectromerty,2010(25) :933-946.
  • 6XIONGX, QI X T,LIU J T,et al.Comparison of modifiers formercury speciation in water by solid phase extraction chromatog-raphy-atomic fluorescence spectrometry [J].Analytical Letters,2014,47:2417-2430.
  • 7ACOSTAG, SPISSO A, LILLANA P F,et al.Determination ofthimerosal in pharmaceutical industry effluents and river watersby HPLC coupled to atomic fluorescence spectrometry throughpost - column UV - assisted vapor generation [J]. Journal ofpharmaceutical and biomedical analysis,2015,106 :79-84.
  • 8GENGL, LI F, SHAO B L,et al.Speciation analysis of mercuryin sediments using HPLC hyphenated to vapor generation atomicfluorescence spectrometry following microwave- assisted extrac-tion [J,].Spectroscopy ,2013,28(2) :54-67.
  • 9HUANGM, GAN W E, XIE S S.On-line electrokinetic extrac-tion and electrochemical hydride generation coupled with atomicfluorescence spectrometry for inorganic arsenic speciation inwater samples [J]. Anal. Methods,2014,6 :1796-]801.
  • 10CONGR,HONG P,WEN Y H,et al.Water and soil by hydridegeneration-atomic fluorescence spectrometry [J].Fresenius En-vironmental Bulletin,2011,20(4a) : 1068-1074.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部