期刊文献+

基于Walsh-Hadamard投影的快速Nonlocal-Means图像去噪 被引量:1

Fast Nonlocal-Means Image Denoising Method Based on Walsh-Hadamard Projection
在线阅读 下载PDF
导出
摘要 针对Nonlocal-means图像去噪算法计算强度较高的问题,提出了一种投影加速算法。分析了Nonlo-cal-means算法的计算瓶颈,利用Walsh-Hadamard变换的快速运算和自递归特性,使用一组完备的Walsh-Hadamard变换将图像块投影到其张成的空间中;利用Walsh-Hadamard投影的能量集中特性和匹配计算过程中的拒绝策略,在Nonlocal-means去噪算法的图像块匹配计算中快速丢弃无法匹配的图像块。实验结果表明,该算法获得了较好的加速性能,且去噪效果没有受到影响。 A fast Nonlocal-means image denoising method with projection is proposed.After analyzing the bottleneck of Noncal-means,the fast and auto-recursive computation of Walsh-Hadamard transform is used to project the image blocks into Walsh-Hadamard space.Because of efficient energy packing of Walsh-Hadamard projection,the algorithm can fast discard those impossible blocks by using a rejection scheme in the matching procedure of image blocks in the Nonlocal-means image denoising method.Experimental results show that the proposed method can accelerate the Nonlocal-means algorithm without image quality degradation.
作者 张志 王润生
出处 《宇航学报》 EI CAS CSCD 北大核心 2011年第2期380-387,共8页 Journal of Astronautics
基金 国家自然科学基金(60902088)
关键词 图像处理 图像去噪 投影 Nonlocal-means Walsh-Hadamard变换 Image processing Image denoising Projection Non-local means Walsh-Hadamard transform
作者简介 张志(1982-),男,博士,主要从事图像处理、分析与理解等方面的研究。通信地址:北京市2861信箱六分箱(100085)电话:(010)66919834—865 E—mail:zhizh.zhang@gmail.com
  • 相关文献

参考文献28

  • 1Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629 - 639.
  • 2Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D. , 1992, 60 ( 1 - 4) : 259 - 268.
  • 3Roth S, Black M J. Fields of experts: A framework for learning image priors[ C ]. IEEE Conference on Computer Vision and Pat- tern Recognition ( CVPR2005 ) , San Diego, USA, June 20 - 26, 2005.
  • 4Roth S, Black M J. Fields of experts [ J]. International Journal of Computer Vision, 2009, 82(2): 205-229.
  • 5Tappen M F, Liu C, Adelson E H, et al. Learning gaussian conditional random fields for low-level vision [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007) , Minneapolis, USA, June 18 -23, 2007.
  • 6Liu C, Szeliski R, Kang S B, et al. Automatic estimation and removal of noise from a single image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2) : 299 - 314.
  • 7Mallat S. A wavelet tour of signal processing[ M ]. San Diego: Academic Press, 1997.
  • 8焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 9Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 2 ) : 349 - 366.
  • 10Tomasi C, Manduchi R. Bilateral filtering for gray and color images[ C ]. IEEE International Conference on Computer Vision ( ICCV1998 ) , Bombay, India, January 4 - 7, 1998.

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

同被引文献19

  • 1BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 2ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736- 3745.
  • 3ORCHARD J, EBRAHIMI M, WONG A. Efficient nonlocal-means denoising using the SVD[C]llProceedings of IEEE International Conference on Image Processing. San Diego, California: IEEE Signal Processing Society, 2008: 1732-1735.
  • 4TASDIZEN T. Principal components for nonlocal-means image denoising[C]llProceedings of IEEE International Conference on Image Processing. San Diego, California: IEEE Signal Processing Society, 2008: 1728-1731.
  • 5ZHANG L, DONG W, ZHANG D, et al. Two-stage image denoising by principal component analysis with local pixel grouping[J]. Pattern Recognition, 2010(43): 1531-1549.
  • 6VAN DE VILLE D, KOCHER M. Nonlocal means with dimensionality reduction and SURE-based parameter selection[J]. IEEE Transactions on Image Processing, 2011, 20(9): 2683-2690.
  • 7VAN DEVILLE D, KOCHER M. SURE-based nonlocal-means[J]. Signal Processing Letters, 2009, 16(11): 973-976.
  • 8SALMON J. On two parameters for denoising with nonlocal-means[J]. Signal Processing Letters, 2010, 17(3): 269-272.
  • 9FENG C S, MING L, WEI Z, et al. Edge preserving image denoising with a closed form solution[J]. Pattern Recognition, 2013, 46(3): 976-988.
  • 10CHEN Q, SUN Q, XIA D. Homogeneity similarity based image denoising[J]. Pattern Recognition, 2010, 43(12): 4089-4100.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部