期刊文献+

非下采样Contourlet变换域混合统计模型图像去噪 被引量:10

Image Denoising Using Mixed Statistical Model in Nonsubsampled Contourlet Transform Domain
在线阅读 下载PDF
导出
摘要 提出了一种基于非下采样Contourlet变换(NSCT)域图像去噪算法.首先根据尺度间与尺度内的NSCT系数之间的相关性,用非高斯分布模型对NSCT系数与其邻域系数及父系数进行建模,给出分类准则,把系数分为重要系数和非重要系数,再采用广义高斯分布来模拟重要系数的概率分布,根据贝叶斯理论得到自适应阈值,并求出最佳参量范围.为了克服软、硬阈值函数的缺点,提出一种自适应的新阈值函数,利用新阈值函数估计出不含噪音的变换系数,并通过非下采样Contourlet逆变换得到去噪后的图像.仿真实验表明,本文方法在峰值信噪比、结构相似性与视觉效果上均优于目前许多优秀的去噪算法. A novel image denoising algorithm based on nonsubsampled Contourlet transform domain is proposed.First,according to the correlation of nonsubsampled Contourlet transform coefficients in interscale and intrascale,non-Gaussian distribution model is used to model its correlations.We propose a classification standard where the coefficients are divided into important and unimportance coefficients,and generalized Gaussian distribution is used to describe the probability distribution for the important coefficients.Adaptive threshold is derived under the Bayesian theory and the best range of the parameter is found out.In order to overcome the shortcoming of the soft and hard thresholding function,then a new adjustable thresholding function is presented.Lastly,the new thresholding function is used to estimate coefficients without noise,and inverse nonsubsampled Contourlet transformation is performed to get denoised image.Experimental results show that our algorithm outperforms the other current outstanding algorithms in peak signal-to-noise ratio,structural similarity and visual quality.
作者 殷明 刘卫
出处 《光子学报》 EI CAS CSCD 北大核心 2012年第6期751-756,共6页 Acta Photonica Sinica
基金 安徽省教育厅重点科研项目(No.KJ2010A282) 安徽省自然科学基金(No.11040606M06)资助
关键词 非下采样CONTOURLET变换 非高斯分布 广义高斯分布 峰值信噪比 结构相似性 Nonsubsampled Contourlet transform(NSCT) Non-Gaussian distribution Generalized Gaussian distribution Peak signal-to-noise ratio(PSNR) Structural similarity(SSIM)
  • 相关文献

参考文献19

  • 1DONOHO D L. Denoising by soft-thresholding[J].IEEE Transactions on Information theory,1995,(03):613-627.doi:10.1109/18.382009.
  • 2CROUSE M S,NOWAK R D,BARANIUK R G. Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing,1998,(04):886-902.
  • 3LEVENT S,IVAN W S. Bivariate shrinkage with local variance estimation[J].IEEE Signal Processing Letters,2002,(12):438-441.
  • 4CHO D,BUI T D. Multivariate statistical modeling for image denoising using wavelet transforms[J].IEEE Transactions on Signal Processing Image Communication,2005,(01):77-89.
  • 5焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 6DO M N,VETTERLI M. The Contourlet transform:an efficient directional nulltiresolution image reprcsentation[J].IEEE Transactions on Image Processing,2005,(12):2091-2106.doi:10.1109/TIP.2005.859376.
  • 7CUNHA A L,Zhou Jian-ping,DO M N. The Nonsubsampled Contourlet Transform:theory,design and application[J].IEEE Transactions on Image Processing,2006,(10):3089-3101.
  • 8戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 9曾业战,钱盛友,刘畅,王岐学,丁亚军.非下采样Contourlet变换自适应图像去噪方法[J].计算机工程与应用,2010,46(10):157-159. 被引量:9
  • 10凤宏晓,侯彪,焦李成,卜晓明.基于非下采样Contourlet域局部高斯模型和MAP的SAR图像相干斑抑制[J].电子学报,2010,38(4):811-816. 被引量:18

二级参考文献109

  • 1Donoho D L. De-noising by soft-thresholding [J]. IEEE Trans. on Inform. Theory, 1995, 41(3): 613-627.
  • 2Abramovich F, Sapatinas T, and Silverman B W. Wavelet thresholding via a Bayesian approach IJl. J. of the Royal Statist. Society, Series B, 1998, 60(3): 725-749.
  • 3Pi zurica A, Philips W, and Lemahieu I, et al.. A joint inter-and intrascale statistical model for wavelet based Bayesian image denoising [J]. IEEE Trans. on Image Proeing, 2002, 11(5): 545-557.
  • 4谭山.脊波双框架系统与自然图像的多变量统计模型[D].[博士论文],西安电子科技大学,2007.
  • 5Foi A, Katkovnik V, and Egiazarian K. Pointwise shapeadaptive DCT for high-quality denoising and deblocking of grayscale and color images [J]. IEEE Trans. on Image Processing, 2007, 16(5): 1395-1411.
  • 6Portilla J, Strela V, and Wainwright M, et al. Image denoising using scale mixtures of gaussians in the wavelet domain [J]. IEEE Trans. on Image Processing, 2003, 12(11): 1338-1351.
  • 7Starck J L, Candes E J, and Donoho D L. The curvelet transform for image denoising [J]. IEEE Trans. on Image Processing, 2002, 11(6): 670-684.
  • 8Do M N and Vetterli M. The contourlet transform: An efficient directional multiresolution image representation [J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106.
  • 9Cunha A L, Zhou J, and Do M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Trans. on Image Processing, 2006, 15(10): 3089-3101.
  • 10Sendur L and Selesnick I W. Bivariate shrinkage functions forwavelet-based denoising exploiting interscale dependency [J]. IEEE Trans. on Signal Proc., 2002, 50(11): 2744-2756.

共引文献301

同被引文献113

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部