期刊文献+

基于高斯隶属度的融合算法在改进Leach中的应用 被引量:8

Application of fusion algorithm based on Gauss membership function in improved Leach protocol
在线阅读 下载PDF
导出
摘要 无线传感器网络中节点采集的数据具有较高的冗余度,对数据进行融合处理后再传送到汇聚节点,能有效地降低能量消耗,延长网络生命周期。设计了一种基于高斯隶属函数的数据融合算法,并改进无线传感网络Leach协议,对传感器节点进行二级分簇,多跳通信延长网络生命周期。在一级簇头节点依据分布图法剔除疏失数据,进而利用高斯隶属函数求得权系数,对采集到的有效数据进行加权融合。经实验仿真证明:该融合技术有效地消除了传感器的测量误差,提高了融合数据的精确度,降低了无线传感网络的能量消耗。 Datas collected by nodes in wireless sensor networks have high redundancy. Data fusion processing before transmitted to the Sink nodes can effectively reduce the energy consumption and prolong the network life cycle. A weighted fusion algorithm based on Gauss membership function is proposed, and Leach protocol in WSNs is improved. The sensor nodes in the network organize themselves into several clusters and choose two level cluster heads using improved Leach protocol. Multiple hops of the communication can prolong the network life cycle. In the first-level cluster heads, distribution method is used to eliminate the error data, and the weighted fusion algorithm based on Gauss membership function is used to process the effective data. Simulation results prove that the proposed data fusion technology can effectively eliminate sensor error, improve the fusion data precision and reduce energy consumption of wireless sensor networks.
出处 《传感器与微系统》 CSCD 北大核心 2011年第2期135-138,共4页 Transducer and Microsystem Technologies
基金 国家科技重大专项基金资助项目(2009ZX03006-003) 广东省科技重大计划资助项目(2009A080207006 2009A080207002)
关键词 数据融合 改进Leach 高斯隶属函数 分布图法 data fusion improved Leach Gauss membership function distribution graph method
作者简介 陈伟琦(1986-),女,广东韶关人,硕士研究生,主要研究领域为无线传感网络数据融合技术及应用。
  • 相关文献

参考文献8

二级参考文献15

共引文献55

同被引文献60

  • 1白林林,严斌宇,罗敬文,苟旭,卢苇.基于节点信任的LEACH协议簇头选举改进算法[J].四川大学学报(工程科学版),2012,44(S1):218-223. 被引量:12
  • 2李悦,孙力娟,王汝传,黄海平.一种改进的无线传感器网络LEACH算法[J].计算机研究与发展,2011,48(S2):131-134. 被引量:17
  • 3王晶,胡玉兰.数字化温度采集系统中的数据融合技术[J].沈阳理工大学学报,2006,25(5):20-22. 被引量:1
  • 4Galluccio Laura,Palazzo Sergio,Campbell Andrew T. Modeling and designing efficient data aggregation in wireless sensor networks under entropy and energy bounds[J].Wireless Inf Networks,2009,(16):175-183.
  • 5Potdar V,Sharif A,Chang E. Wireless sensor networks:A survey[A].2009.636-641.
  • 6孙利民;李建中;陈渝.无线传感器网络[M]{H}北京:清华大学出版社,2005.
  • 7O' agan M. Using maxium entropy-ordered weighted averaging to construct a fuzzy neuron[A].California:Pacific Grove,1990.618-623.
  • 8Bajaber F, Awan I. Centralized dynamic clustering for wireless sensor network [C]//International conference on advanced infor- marion networking and applications workshops,2009:193-198.
  • 9Heinzelman WR, Chandrakasan A P, Blakrishnan H. An app- lication-specific protocol architecture for wireless microsensor networks[J].IEEE Transactions on Wireless, 2002, 1(4):660-670.
  • 10Akyild I F, Su W ,Sankarasubramaniam Y, et al.A survey on sensor networks [J]. IEEE Communications Magazine, 2002, 40 (8):102- 114.

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部