期刊文献+

基于高光谱成像及神经网络技术检测玉米含水率 被引量:22

Detection of Water Content in Corn Based on Hyperspectral Imaging and Neural Network
在线阅读 下载PDF
导出
摘要 基于高光谱成像及人工神经网络技术对玉米含水率进行了检测。检测波长为450~900nm,由玉米粒反射光谱图像获取反映其含水率的光谱特征波长。利用人工神经网络建立了玉米粒含水率的预测模型,模型相关系数达到0.98。对含水率预测结果的误差最大绝对值为2.1182,最小绝对值为0.0024。相对误差绝对值的平均值为0.3090,结果表明利用高光谱图像技术对玉米含水率进行无损检测是可行的。 Water content is an important quality attributer.It was investigated that water content in corn was detected based on hyperspectral imaging and neural network.The detection wavelengths ragion between 450 and 900 nm.The spectrum features wavelengths for predicting the water content in corn were obtained by scatting spectral images.Subsequently,artificial neural network was used for developing a prediciton model to predict water content in corn.The prediction results showed that the maximal absolute value of error was 2.1182,the minimal absolute value of error was 0.0024,the average was 0.3090.Therefore,the hyperspectral imaging is an effective method for nondestructive assessing the water content in corn.
出处 《包装与食品机械》 CAS 2010年第6期1-4,共4页 Packaging and Food Machinery
基金 国家科技支撑计划(2008BADA8B04)
关键词 玉米 高光谱图像 含水率 神经网络 corn hyperspectral imaging water content neural network
作者简介 李江波(1982-),男,博士生,研究方向为基于计算机视觉技术的水果表面缺陷检测。 通讯作者:饶秀勤(1968-),男,博士,副教授,研究方向为农产品无损检测。通讯地址:310029杭州浙江大学生物系统工程与食品科学学院,E-mail:xqrao@zju.edu.cn。
  • 相关文献

参考文献13

  • 1Hildrum K I, Isaksson T, Nas T, et al. Near infrared reflectance spectroscopy in the prediction of sensory properties of beef[ J ]. Journal of Near Infrared Spectroscopy, 1995, 3 (2) : 81-87.
  • 2Wen Z, Tao Y. Dual - camera N IR/M IR imaging for stem- end/calyx identification in apple defect sorting [ J]. Transaction of the ASAE, 2000, 43 (2) : 449- 452.
  • 3徐惠荣,应义斌.近红外图像和光谱分析技术在农产品品质无损检测中的应用与展望[J].浙江大学学报(农业与生命科学版),2002,28(4):460-464. 被引量:20
  • 4马本学,饶秀勤,应义斌,沈飞,樊玉霞.基于近红外漫反射光谱的香梨类别定性分析[J].光谱学与光谱分析,2009,29(12):3288-3290. 被引量:24
  • 5ARIANA D, LU R, GUYER D E. Hyperspectral reflectance imaging for detection of bruises on pickling cucumbers [ J ]. Computers and Electronics in Agriculture, 2006, 53(1) : 60-70.
  • 6Qiao J, Ngadi M O, Wang N, et al. Pork quality classification using a hyperspectral imaging system and neural network [ J ]. International Journal of Food Engineering, 2007, 3(1) : 1-12.
  • 7Xing J, Symons S, Shahina M, et al. Detection of sprout damage in Canada Western Red Spring wheat with mul- tiple wavebands using visible/near - infrared hyperspectral imaging [ J ]. Biosystems Engineering, 2010, 106 (2) :188-194.
  • 8蔡健荣,王建黑,陈全胜,赵杰文.波段比算法结合高光谱图像技术检测柑橘果锈[J].农业工程学报,2009,25(1):127-131. 被引量:49
  • 9Wallays C,. Missotten B, Baerdemaeker J De, et al. Hyperspectral waveband selection for on - line measurement of grain cleanness [ J ]. Biosystems engineering, 2009(104) : 1-7.
  • 10赵杰文,刘剑华,陈全胜,Saritporn Vittayapadung.利用高光谱图像技术检测水果轻微损伤[J].农业机械学报,2008,39(1):106-109. 被引量:106

二级参考文献90

共引文献319

同被引文献324

引证文献22

二级引证文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部