期刊文献+

加入改进LBP纹理的高分辨率遥感图像分类 被引量:12

The Application of Extended LBP Texture in High Resolution Remote Sensing Image Classification
在线阅读 下载PDF
导出
摘要 高分辨率遥感图像纹理信息丰富,将其与光谱信息相结合进行地物分类可提高地物的精度。将改进的局部二值模式(LBP)纹理应用到高分辨率图像的土地覆盖分类中,并与只利用光谱信息和加入传统LBP纹理信息的分类结果相比较。结果表明:改进的LBP具有很好的抗噪性能,并能更有效地表达图像的纹理信息,加入这种纹理信息的图像分类精度明显高于纯光谱分类和加入传统LBP纹理信息的分类。 High - resolution remote sensing images have rich texture information, and combined texture information and image spectral information can improve the recognition accuracy of surface feature. In this paper, a new extended Local Binary Patterns (LBP) texture was applied to the high - resolution images classification in comparison with classifications using spectral data only and using combined spectral data and LBP texture features. The results show that the extended LBP has a good anti - noise performance, and the classification of image including the extended LBP texture can achieve a higher accuracy than the classifications using spectral data alone and using combined spectral data and LBP texture features.
出处 《国土资源遥感》 CSCD 2010年第4期40-45,共6页 Remote Sensing for Land & Resources
关键词 纹理 LBP 分类 Texture LBP Classification
作者简介 宋本钦(1984-),男,硕士研究生,主要从事高分辨率遥感信息处理方法研究。
  • 相关文献

参考文献14

  • 1Zhang L, Huang X,Huang B,et al. A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery[ J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44 ( 10 ) :2950 - 2961.
  • 2Li P J,Cheng T,Guo J C. Multivariate Image Texture by Multivariate Variogram for Muhispectral Image Classification [ J ]. Photogrammetric Engineering and Remote Sensing,2009,75 ( 2 ) : 147 - 157.
  • 3Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the Grey- Level Co - ocurrence Matrix Method for Land - Cover Classification Using SPOT Imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4) :513 -519.
  • 4Gong P,Marceau D J,Howarth P J. A Comparison of Spatial Feature Extraction Algorithms for Land - Use Classification with SPOT HRV Data [ J]. Remote Sensing of Environment, 1991,40 : 137 - 151.
  • 5黄颖端,李培军,李争晓.基于地统计学的图像纹理在岩性分类中的应用[J].国土资源遥感,2003,15(3):45-49. 被引量:38
  • 6Haralick R M,Shanmugam K,Dinstein I. Texture Feature for Image Classification [ J ]. IEEE Transactions on Systems, Man and Cybermetics, 1973,3:610 - 625.
  • 7吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报(A辑),2001,6(4):333-337. 被引量:55
  • 8Ojala T, Pietikainen M, Maenpaa T. Muhimsolutin Gray Scale and Rotation Invariant Texture Analysis with Local Binary Pattern [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7) :971 - 987.
  • 9Kyllonen J, Pietikainen M. Visual Inspection of Parquet Slabs by Combining Color and Texture[ G]//Proc IAPR Workshop on Machine Vision Applications (MVA00). Tokyo :2000 : 187 - 192.
  • 10Feng X, Pietikainen M, Hadid A. Facial Expression Recognition with Local Binary Patterns and Linear Programming [ J ]. Pattern Recognition and Image Analysis,2005,15 ( 2 ) :550 - 552.

二级参考文献27

  • 1吴健平,杨星卫.遥感数据监督分类中训练样本的纯化[J].国土资源遥感,1996,8(1):36-41. 被引量:29
  • 2Mather, P.M.. Acomputationally-efficient maximum -likeli hood classifier employing prior probabilities for remote -sensed data[J]. INT. J. Remote Sensing, 1985,6 (2) : 69-376.
  • 3Strahler, A. H.. The use of prior probabilities in maximum-likelihood classification of remotely sensed dat [J]. Remote Sensing Environ. 1980, 10,135-163.
  • 4Jensen, J. R.. Introductory Digital Image Processing (2nd edition ) [M]. Prentice-Hall, New Jersey. 1996.
  • 5Lillesand, T.M , Kiefer, R.W.. Remote Sensing and Image Interpretation (4th edition) [M]. John Wiley, New York.2003.
  • 6Arai, K.. A supervised thematic mapper classification with a purification of training samples [J]. INT.J.REMOTE SENS-ING, 1992,13, (11) : 2039-2049.
  • 7党安荣.ERDASIMAGINE遥感图像处理方法[M].北京:清华大学出版社,2001..
  • 8Haralick R M, Shanmugam K, Dinstein I.Texture feature for image classification[J].IEEE Transactions on Systems, Man, and Cybermetics, 1973, 3: 610-621.
  • 9Ramstein G, Raffy M.Analysis of the structure of radiometric remotely-sensed images[J].International Journal of Remote Sensing, 1989, 10: 1049-1073.
  • 10Miranda F P, Carr J R.Application of the semivariogram texture classifier (STC) for vegetation discrimination using SIRB data o the Guiana Shield, northwestern Brazil[J].Remote Sensing Reviews, 1994, 10: 155-168.

共引文献98

同被引文献102

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部