期刊文献+

基于小波与高斯混合模型的SAR图像增强 被引量:2

SAR Image Enhancement Based on Joint Wavelet-Gaussian Mixture Model
在线阅读 下载PDF
导出
摘要 针对合成孔径雷达(SAR)高分辨率指标实现受仪器代价约束,难以无限提高图像视觉效果的问题,提出了利用小波滤波器和高斯混合模型的SAR图像增强方法,实现强点后聚焦,提升图像可判读性。在传统成像处理的基础上,采用了单一图像输入以及基于Daubechies小波滤波器的特征提取方法实现增强。用实际的Ka频段毫米波SAR图像进行处理验证并对比多类小波滤波器。结果表明:该方法相比传统的双线性插值方法,能够对实验特征强点3 dB宽度收窄23%,具有运算量低、只需要待增强图像单一输入源的特点。 In order to solve the problem that the visual effect of images cannot be improved infinitely since the synthetic aperture radar(SAR)high-resolution parameters are constrained by the payload instrument cost,an SAR image enhancement method based on wavelet filter and Gaussian mixture model is proposed so as to achieve point postfocus and improve the image interpretability.On the basis of traditional imaging processing,a single image input and a feature extraction method based on Daubechies wavelet filter are used to achieve the enhancement.The actual Ka-band millimeter-wave SAR image is used for processing verification and comparison of multiple types of wavelet filters.The results show that compared with the traditional bilinear interpolation method,the proposed method can narrow the 3 dB width of the experimental feature strong point by 23%,and has the characteristics of low computational complexity and a single input source need for images to be enhanced.
作者 吴思利 孙颖 王辉 滑伟 WU Sili;SUN Ying;WANG Hui;HUA Wei(Shanghai Institute of Satellite Engineering,Shanghai 201109,China)
出处 《上海航天(中英文)》 CSCD 2021年第S01期26-31,共6页 Aerospace Shanghai(Chinese&English)
基金 “上海市毫米波空天信息获取及应用技术重点实验室”项目资助
关键词 图像增强 图像处理 小波滤波器 毫米波合成孔径雷达 混合模型 image enhancement image processing wavelet filter millimeter wave synthetic aperture radar(SAR) mixture model
作者简介 吴思利(1996—),男,硕士,主要研究方向为SAR信号处理。
  • 相关文献

参考文献5

二级参考文献60

  • 1郭小卫,田铮.基于小波域边缘方向特征的SAR图象噪声抑制方法[J].中国图象图形学报(A辑),2003,8(4):453-458. 被引量:11
  • 2贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 3张朝晖,潘春洪,马颂德.一种基于修正Frost核的SAR图像斑点噪声抑制方法[J].中国图象图形学报(A辑),2005,10(4):431-435. 被引量:14
  • 4周伟华,王鑫,罗斌.基于双树复小波变换的相位保持SAR图像降噪[J].中国图象图形学报,2007,12(5):805-810. 被引量:6
  • 5J. Lee, Speckle suppression and analysis for synthetic aperture radar, Optical Engineering, Vol. 25, pp. 636- 643, May. 1986.
  • 6V. Frost, J. Stiles, K. Shanmugan and J. Holtzman, A model for radar images and its application to adaptive digital filtering of muhiplicative noise, IEEE Transactions on Pattern Anal ysis and Machine Intelligence, Vol. 2, No. 4, pp. 157- 166, Feb. 1982.
  • 7D. Kuan, A. Sawchuk, T. Strand and P. Chavel, Adaptive restoration of images with speckle, IEEE Transactions on Acoustic Speech Signal Processing, Vol. 35, pp. 373-383, Mar. 1987.
  • 8A. Baraldi, F. Parmigiani, A Refined gamma MAP SAR speckle filter with improved geometrical adaptivity, IEEE Transactions on Geoseienee and Remote Sensing, Vol. 33, pp. 1245-1257 ,Sep. 1995.
  • 9J. Lee, Refined filtering of image noise using local statistics, Computer Graphics and Image Processing, Vol. 15, pp. 380-398,1951.
  • 10D. Donono and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, Vol. 81, pp. 425-455,1994.

共引文献95

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部