期刊文献+

基于全局概率密度搜索的快速目标跟踪 被引量:4

Fast Object Tracking with Global Kernel Density Seeking
在线阅读 下载PDF
导出
摘要 为了解决均值迁移目标跟踪算法中跟踪窗口对局部概率密度模式敏感的问题,该文提出一种基于全局概率密度搜索的目标跟踪策略。根据目标尺度设定一组从大到小排列的带宽序列,并依次根据每个带宽进行均值迁移迭代收敛,利用大带宽的平滑作用避开局部概率模式的干扰;依靠小带宽进行精确定位,最终收敛到真实目标区域。为了提高均值迁移的收敛速度,引入了Over-Relaxed优化策略加速迭代过程。在边界优化算法的收敛条件约束下,根据采用Over-Relaxed策略前后相关系数的变化,自适应地调整学习率。实验结果表明全局概率密度搜索能够有效地跟踪快速运动的目标,并且当目标短暂丢失时也有一定的恢复能力;Over-Relaxed策略也能显著的提高收敛步长,减少迭代次数。 An object tracking algorithm with global kernel density seeking is proposed to avoid local probability mode in mean shift tracking process.Firstly,a monotonically decreasing sequence of bandwidths is obtained according to the object scale.At the first bandwidth,a maximum probability can be found with mean shift,and the next iteration loop started at the previous convergence location.Finally,the best density mode is obtained at the optimal bandwidth.In the convergence process,with the smoothness effect of the large bandwidth,the compact of the local probability mode is avoided,and the precise position of the object can be found with the optimal bandwidth,which is similar to the object scale.To speed up the convergence,Over-Relaxed strategy is introduced to enlarge the step size.Under the convergence rule,the correlation coefficient is used to adopt the learning rate.The experimental results prove that the proposed tracker with global kernel density seeking is robust in high-speed object tracking,and performs well in occlusions.The adaptive Over-Relaxed strategy is effective to lower the convergence iterations by enlarging the step size.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第11期2680-2685,共6页 Journal of Electronics & Information Technology
基金 "985"工程学科建设投资项目(107008200400020)资助课题
关键词 目标跟踪 均值迁移 全局概率密度搜索 Over-Relaxed优化 Object tracking Mean Shift(MS) Global kernel density seeking Over-Relaxed(OR)
作者简介 通信作者:周斌giggsnet@163.com 周斌:男,1984年生,博士生,研究方向为图像处理、机动目标跟踪与识别. 王军政:男,1964年生,教授,博士生导师,研究领域包括现代检测技术、视觉伺服控制. 沈伟:男,1981年生,博士,讲师,研究领域为图像处理与嵌入式系统.
  • 相关文献

参考文献11

  • 1姚红革,齐华,郝重阳.复杂情形下目标跟踪的自适应粒子滤波算法[J].电子与信息学报,2009,31(2):275-278. 被引量:9
  • 2张涛,蔡灿辉.基于多特征Mean Shift的人脸跟踪算法[J].电子与信息学报,2009,31(8):1816-1820. 被引量:10
  • 3Maggio E and Cavallaro A. Accurate appearance based bayesian tracking for maneuvering targets [J]. Computer Vision and Image Understanding, 2009, 113: 544-555.
  • 4王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 5Zhang K, Kwok J T, and Tang M. Accelerate convergence using dynamic mean shift[C]. Proceedings of the 9th European Conference on Computer Vision. New York, USA, 2006: 257-268.
  • 6Fashing M and Tomasi C. Mean shift is a bound optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 471-474.
  • 7Shen C and Brooks M J. A fast global kernel density mode seeking with application to localization and tracking[C]. Proceedings of IEEE International Conference on Computer Vision. Los Alamitos, 2005: 1516-1523.
  • 8Yin Zhao-zheng and Collins R T. Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Anchorage, USA, 2008: 1-8.
  • 9Elgammal A and Duraiswami R. Probabilistic tracking in joint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C, USA, 2004: 790-797.
  • 10Comaniciu D and Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.

二级参考文献35

  • 1Kwok C, Fox D, and Meila M. Real-time particle filters [J]. Proce. IEEE, 2004, 92(3): 469-484.
  • 2Arulampalam S, Maskell S, Gordon N J, and Clapp T. A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
  • 3Yoshinori Satoh, Takayuki Okatani, and Koichiro Deguchi. A color-based tracking by kalman particle filter [C]. IEEE Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom. 2004: 502-505.
  • 4Zhou S K, Chellappa R, and Moghaddam B. Visual tracking and Recognition using appearance-adaptive models in particle filters [J]. IEEE Trans. on Image Processing, 2004, 13 (11): 1491-1506.
  • 5Koichiro Deguchi, Oki Kawanaka, and Takayuki Okatani. Object tracking by the mean-shift of regional color distribution combined with the particle-filter algorithm [C]. Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom, 2004: 506-509.
  • 6Jia J P, Wang Q, and Chai Y M. Object tracking by multidegrees of freedom mean shift procedure combined with the Kalman particle filter algorithm [C]. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China, 2006: 3793-3797.
  • 7Kailath T. The Divergence, Bhattacharyya distance measures in signal selection [J]. IEEE Trans. on Comm. Technology, 1999, 15(2): 253-259.
  • 8Comaniciu D and Meer P. Mean shift: A robust application toward feature space analysis [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 9Comaniciu D and Meer P. Kernel-based object tracking [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 10Comaniciu D,Ramesh V,and Meer P.Real time tracking of non-rigid objects using mean shift[C].Computer Vision and Pattern Recognition,Hilton Head Island,SC,USA,Jun.13-15,2000,Vol.2:142-149.

共引文献69

同被引文献10

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部