期刊文献+

基于梯度方向直方图特征的多核跟踪 被引量:24

Multiple Kernels Based Object Tracking Using Histograms of Oriented Gradients
在线阅读 下载PDF
导出
摘要 提出了基于梯度方向直方图特征的多核跟踪算法,对跟踪过程中的光线变化和部分遮挡具有较强的鲁棒性.该算法将目标分块,分别提取出每块的核函数加权的梯度方向直方图特征.目标模型和候选目标模型的相似度用所有块直方图间的Bhattacharyya系数之和进行度量,目标的跟踪通过Mean shift算法最大化两者的相似度实现.对车辆、人体等多个日标的跟踪验证了本文提出算法的有效性. A novel multiple kernels based object tracking algorithm using histograms of oriented gradients is proposed in this paper, which is robust to illumination change and partial occlusion. The algorithm divides the object into blocks and extracts kernel weighted histograms of oriented gradients for each block. The similarity between target model and candidate model is measured by the sum of Bhattacharyya coefficients of all the corresponding histograms. The object is tracked by maximizing the similarity measure using the mean shift algorithm. Experiments on the tracking of vehicle and human demonstrate the effectiveness of the proposed algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2009年第10期1283-1289,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60872084)资助~~
关键词 Mean SHIFT 核跟踪 BHATTACHARYYA系数 梯度方向直方图 Mean shift, kernel based tracking (KBT), Bhattacharyya coefficient, histograms of oriented gradients
作者简介 贾慧星 清华大学电子工程系博士研究生.2003年获得北京交通大学电子信息工程学院学上学位.主要研究方向为模式识别,计算机视觉和智能车辆.本文通信作者.E-mail:jiahx03@mails.tsinghua.edu.cn 章毓晋 清华大学电子工程系教授.主要研究方向为图像工程(图像处理、图像分析、图像理解及其技术应用).E-mail:zhang-yj@tsinghua.edu.cn
  • 相关文献

参考文献14

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 2Collins R T. Mean-shift blob tracking through scale space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Madison Wisconsin, USA: IEEE, 2003. 234-240.
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4Yilmaz A. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-6.
  • 5Yang C J, Duraiswami R, Davis L S. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 176-183.
  • 6李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 7王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 8Lowe D G. Distinctive image features from scale-invariant key-points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Dalai N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893.
  • 10Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

二级参考文献35

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533.

共引文献254

同被引文献271

引证文献24

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部