摘要
将分形法引入光学表面粗糙度评价体系中,以克服常用表面粗糙度评价参数(如Rn、Rq、PSD)随取样点位置、取样长度而变化的弊端。用原子力显微镜(AFM)对样片表面进行测量,计算测量值的配分函数和多重分形谱。计算结果表明:不同样品在同样取样范围内多重分形谱显著不同,同一样品在不同取样范围内配分函数曲线有区别,但多重分形谱却非常相似。对分形计算结果与表面粗糙状态之间的内在联系进行了分析,提出用多重分形谱宽把分形计算结果量化,以客观、唯一地表示被测表面粗糙状态。
Multi-fractal method is used to evaluate optical surface roughness which varies greatly with the sampling position and size if evaluated by other commonly used parameters such as mean roughness (Rn), root mean square roughness (Rq) or power spectrum density (PSD) . Based on the atomic force microscope (AFM) images, their partition function and muhi-fractal spectrum are calculated. The calculation indicates that the multi-fractal spectra of different samples with the same sampling size defter significantly from each other. The cugves of the partition function from the same sample with different sampling size and position are different, but their spectra are quite similar. The relations between the spectra shape and surface roughness are discussed. A suggestion is given about how to measure a surface roughness with the result of the calculation.
出处
《计量学报》
CSCD
北大核心
2010年第5期430-435,共6页
Acta Metrologica Sinica
关键词
计量学
表面粗糙度
分形
多重分形谱
自相似
Metrology
Surface roughness
Fractal
Multi-fractal spectrum
Self-affinity
作者简介
干蜀毅(1963-),男,安徽青阳人,合肥工业大学副教授,中国科技大学博士研究等,主要研究方向为光学薄膜技术及设备。gansy@mail.ustc.edu.cn