摘要
简述了当前河型研究现状、分形理论的特点方法及其目前在天然河道的应用现状,并结合分形理论对基于最小能耗率的河流演变理论进行探讨,研究了一定水沙条件下,河流能耗的分形理论表示公式,扩展了河道几何边界条件对于能量损耗的表述方法,推导了河型判别的分维数公式,并提出了目前的不足与进一步研究的方向。
The fractal theory is a new tool for the study of the fluvial processes and discriminating the river patterns.This paper firstly gives a review on the current status of the river pattern study and the application of the fractal theory in the river management.On the basis of the fractal theory,the authors then make an approach to the fluvial processes based on the minimum energy dissipation rate,and obtain the expression of the river energy dissipation under certain condition of water and sediment.The describing methods on the relation of the energy dissipation and the geometric boundary condition of the river channel are supplemented. The fractal dimension formula to judge whether a river is stable is derived.At last,the shortages of the fractal theory and further research are set forth in the paper.
出处
《泥沙研究》
CSCD
北大核心
2010年第2期35-42,共8页
Journal of Sediment Research
基金
水利部公益性行业科研专项(2007SHZ1-3-01)
关键词
河道模型
分形理论
最小能耗率
分形特征弯曲度
河床稳定
river pattern
fractal theory
minimum energy dissipation rate theory
fractal curvature
stability of the riverbed
作者简介
王卫红(1958-),女,河南郑州人,教授级高工,主要从事河流动力学及河床演变学研究