期刊文献+

变周期窗口平面动力系统的构造与可视化 被引量:7

Construction and Visualization of Planar Dynamic Systems with Non-equidistant Cyclic Windows
在线阅读 下载PDF
导出
摘要 为了用同一个迭代映射构造出多个不同视觉效果的平面连续排列图案,提出一种用变周期窗口的动力系统生成具有P1对称特性的平面排列图案的有效算法.该算法采用余弦函数及含参的非线性角度变量构造一族使动力平面上各周期窗口的尺度变化的迭代映射;通过计算任意周期窗口和最大周期窗口得出窗口间相应点之间的非线性对应关系,并构造出各周期窗口中的混沌吸引子和充满Julia集,其图案是连续的且结构不同的;选用不同的周期窗口作为基本计算区域,使之与正方形像素矩阵对应,并构造出基本图元,实现了用一个映射构造出多个平面排列图案的算法.实验结果表明,采用文中算法可以生成大量具有P1对称的平面等距排列的混沌吸引子和充满Julia集图案. To generate planar tiling images with different visual effect by the same iterating mapping,we present a method that allows the P1 planar tessellations to be constructed by a planar dynamic systems with non-equidistant cyclic windows.We construct a family of iterative mappings,which yield cyclic windows of variant size in the dynamical plane by incorporating cosine functions and non-linear angle variables with parameters.Chaotic attractors and filled-in Julia sets in the different cyclic windows are created by establishing the coordinates of any cyclic windows and the maximal window,then clarifying the relationship of corresponding points between these cyclic windows.The respective images in different windows are continuous but with individual structures.We can choose any cyclic window as the basic computing region and stretch or compress it into a square,which is transferred to the plane to compose the planar tilling.Experimental results show the effectiveness of the proposed approach.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第5期784-790,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 辽宁省自然科学基金(20082007) 沈阳市人才基金(2008140403010)
关键词 动力系统 变周期窗口 混沌吸引子 充满JULIA集 dynamical systems non-equidistant cyclic windows chaotic attractor filled-in Julia set
作者简介 陈宁(1958-),女,博士,教授,主要研究方向为非线性动力系统计算机图形化;(n .chen@126.com) 孙艳玲(1979-),女,助教,硕士研究生,主要研究方向为非线性动力系统图形化; 孙晶(1983-),女,硕士研究生,主要研究方向为非线性动力系统图形化.
  • 相关文献

参考文献11

  • 1Chen N,Zhu W Y.Bud-sequence conjecture on M fractal image and M-J conjecture between c and z planes from z←zw+c(w=a+iβ)[J].Computers & Graphics,1998,22(4):537-546.
  • 2朱伟勇,朱志良,刘向东,曾文曲,于海,曹林.周期芽苞Fibonacci序列构造M-J混沌分形图谱的一族猜想[J].计算机学报,2003,26(2):221-226. 被引量:18
  • 3Escher M C.Escher on Escher:exploring the infinite[M].New York:Harry N.Abrams,1989.
  • 4Field M,Golubitsky M.Symmetry in chaos[M].Oxford:Oxford University Press,1992.
  • 5Armstrong M A.Groups and symmetry[M].New York:Springer,1988.
  • 6Carter N C,Eagles R L,Grimes S M,et al.Chaotic attractors with discrete planar symmetries[J].Chaos Solitons and Fractals,1998,9(12):2031-2054.
  • 7Jian L,Ye Z X,Zou Y,et al.Orbit trap rendering methods for generating artistic images with crystallographic symmetries[J].Computers & Graphics,2005,29(5):787-794.
  • 8Chung K W,Ma H M.Automatic generation of aesthetic patterns on fractal tilings by means of dynamical systems[J].Chaos,Solitons and Fractals,2005,24(4).1145-1158.
  • 9Reiter C.Fractals,visualization and J[M].3rd ed.Lulu:Clifford A Reiter,2007.
  • 10Sprott J C.Automatic generation of strange attractors[J].Computers & Graphics,1993,17(3):325-332.

二级参考文献12

  • 1Mandelbrot B B. The Fractal Geometry of Nature. San Fransisco: Freeman W H,1982
  • 2Rojas Raul. A tutorial on efficient computer graphic representation of the Mandelbrot set. Computers & Graphics,1991,15(1):91~100
  • 3May R. Simple Mathematical models with very complicated dynamics. Nature, 1976, 261: 455~467
  • 4Chen N, Zhu W Y. Bud-sequence conjecture on M fractal image and M-J conjecture between C and Z planes from. Comput. & Graphics, 1988, 22(4): 537~546
  • 5Yan D J, Liu X D, Zhu W Y. A study of Mandelbrot and Julia sets generated from a general complex cubic iteration. Fractals, 1999, 7(4): 433~437
  • 6Liu X D, Zhu W Y, Yan D J. The bounds and the dimensions of the general M and J sets. Fractals, 2000, 8(2): 215-218
  • 7Feigenbaum M J. Quantitative universality for a class of nonlinear transformations. Journal of Statistic Physics, 1978, 19(6): 25~52
  • 8Liu X D, Zhu Z L, Wang G X, Zhu W Y. Composed accelerated escape time algorithm to construct the general Mandelbrot sets. Fractals, 2001, 19(2): 149~153
  • 9Wang X Y, Liu X D, Zhu W Y. Analysis of C-plane fractal images from z←zα+c for α<0 . Fractals, 2000, 8(3): 307-314
  • 10王兴元,刘向东,朱伟勇.由复映射z←z~α十c(α<0)所构造的广义M-集的研究[J].数学物理学报(A辑),1999,19(1):73-79. 被引量:30

共引文献17

同被引文献49

  • 1王兴元,刘威.利用陷阱技术构造伪3D牛顿变换的M-J集[J].计算机辅助设计与图形学学报,2005,17(4):754-760. 被引量:7
  • 2Field M,Golubitsky M.Symmetry in Chaos[M].New York:Oxford University Press,1992.
  • 3Chen N,Zhu W Y.Bud-sequence conjecture on M fraetal image and M-J conjecture between c and z planes from z←zω+c(ω=α+iβ)[J].Computers & Graphics,1998,22 (4):537-546.
  • 4Chung K W,Chan H S Y,Chen N.General Mandelbrot sets and Julia sets with color symmetry from equivariant mapping of the modular group[J].Computers & Graphics,2000,24(6):911-918.
  • 5Chen N,Zhu X L,Chung K W.M andJ sets from Newton's transformation of the transcendental mapping F(z)= ezω+cwith vcps[J].Computers & Graphics,2002,26 (2):371-383.
  • 6Romera M,Pastor G,Alvarez G,et al.External arguments in the multiple-spiral medallions of the Mandelbrot set[J].Computers & Graphics,2006,30(3):460-469.
  • 7Sprott J C.Automatic generation of strange attractors[J].Computers and Graphics,1993,17(3):325-332.
  • 8Carter N C,Eagles R L,Grimes S M,et al.Chaotic attractors with discrete planar symmetries[J].Chaos Solitons & Fractals,1998,9(12):2031-2054.
  • 9Chen N,Meng F Y.Critical points and dynamic systems with planar hexagonal symmetry[J].Chaos,Solitons & Fractals,2007,32(3):1027-1037.
  • 10Chen N,Li Z C,Jin Y Y.Visual presentation of dynamic systems with hyperbolic planar symmetry[J].Chaos,Solitons & Fractals,2009,40(2):621-634.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部