期刊文献+

基于复变换z←(e^(iθ)z)~(1/2)的分形曲线构造方法研究

Research on Fractal Construction Method Based on Complex Transformation z← (e^(iθ))^(1/2)z
在线阅读 下载PDF
导出
摘要 迭代函数系统理论一直被用于并被证明是非常有效的分形图形构造方法.本文研究了由四个函数构成的复平面上的迭代函数系,在迭代函数系中采用了构造正多边形的线性迭代函数拓展到复平面的形式与基于Z←(e^(iθ))^(1/2)Z的复平面迭代函数相结合的方法,构造出具有多边形特色的分形曲线.文中从迭代函数族的周期特性角度对迭代函数系中的线性迭代函数进行分析,给出了由迭代函数系统中两个线性函数构造任意正多边形分形的方法.在讨论了Z←(e^(iθ))^(1/2)Z分形曲线构造特点的基础上,提出了由不同类别函数组成的迭代函数系构造分形图的新方法,生成了具有Dn和Zn对称特性分形图案. The fractal theory based on iterated function system is used for constructing fractal images as a very effective method all along. This paper studies an iterative function system on the complex plane made up of four functions. In the IFS ,we adopt linear n-reg- ular polygon mappings form extended to the complex plane combining with the iterative mappings as form z←√e^iθz to construct fractal curves with polygon features. Lots of analyses are done with regard to the properties of linear iterated function system from the angle of periodic characteristics of iterative function family and a new method is provided for creating arbitrary polygon fractal images utilizing two linear mapping in the IFS. Based on the discussion with structural features of the fractal curve about Zz←√e^iθz,a tech- nique with variety of mappings to generate the fractal is put forward and plenty of novel images with Dn and Zn symmetry create.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第6期1344-1347,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272253)资助
关键词 迭代函数系统 分形 对称 NIFS 复平面 iterated function systems fractal images symmetry nonlinear systems complex plane
作者简介 董洁,女,1969年生.硕士,副教授,研究方向为非线性动力系统计算机图形化E-mail:dong_jie_2002@163.com 陈宁,女,1958年生,博士,教授,研究方向为非线性动力系统计算机图形化 王凤英,女,1976年生,硕士,副教授,研究方向为非线性动力系统计算机图形化
  • 相关文献

参考文献5

二级参考文献24

  • 1陈联.IFS的非线性模型及其应用[J].计算机应用,2001,21(z1):130-131. 被引量:1
  • 2BARNSLEY M F,DEMKO S.Iterated function systems and the global construction of fractals[C] //Proceedings of the Royal Society of Landon.Landon:The Royal Society,1985:243-275.
  • 3BURCH B,HART J C.Linear fractal shape interpolation[C] //Proceedings of the Graphics Interface.Kelowna:The Graphics Interface,1997:155-162.
  • 4MARTYN T.A new approach to morphing 2D affine IFS fractals[J].Computers and Graphics,2004,28(2):249-272.
  • 5JIANG L,GUO X C,LU L.An algorithm of fractal ttee generate base on controllable random transform[C] //2009 International Conference on Computer Modeling and Simulation.Macao:IAC-SIT,2009:262-264.
  • 6VRSCAY E R,WEIL D."Missing moment"and perturbativemethods for polynomial iterated function systems[J].Physica D,1991,50:478-492.
  • 7EDUARD G.Modeling and rendering of nonlinear iterated function systems[J].Computers and Graphics,1994,18(5):739-748.
  • 8WANG X Y,LI F P.A class of nonlinear iterated function system attractors[J].Nonlinear Analysis,2009,70(2):830-838.
  • 9Vrscay E R, Roehric C J. Missing moment and perturbative method for polynomial iterated function systems [J]. Physical: D, 1991, 50: 478-492.
  • 10Eduard Groller. Modeling and rendering of nonlinear iterated function systems [J]. Computers & Graphics,18 (5): 1994, 739-748.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部