摘要
迭代函数系统理论一直被用于并被证明是非常有效的分形图形构造方法.本文研究了由四个函数构成的复平面上的迭代函数系,在迭代函数系中采用了构造正多边形的线性迭代函数拓展到复平面的形式与基于Z←(e^(iθ))^(1/2)Z的复平面迭代函数相结合的方法,构造出具有多边形特色的分形曲线.文中从迭代函数族的周期特性角度对迭代函数系中的线性迭代函数进行分析,给出了由迭代函数系统中两个线性函数构造任意正多边形分形的方法.在讨论了Z←(e^(iθ))^(1/2)Z分形曲线构造特点的基础上,提出了由不同类别函数组成的迭代函数系构造分形图的新方法,生成了具有Dn和Zn对称特性分形图案.
The fractal theory based on iterated function system is used for constructing fractal images as a very effective method all along. This paper studies an iterative function system on the complex plane made up of four functions. In the IFS ,we adopt linear n-reg- ular polygon mappings form extended to the complex plane combining with the iterative mappings as form z←√e^iθz to construct fractal curves with polygon features. Lots of analyses are done with regard to the properties of linear iterated function system from the angle of periodic characteristics of iterative function family and a new method is provided for creating arbitrary polygon fractal images utilizing two linear mapping in the IFS. Based on the discussion with structural features of the fractal curve about Zz←√e^iθz,a tech- nique with variety of mappings to generate the fractal is put forward and plenty of novel images with Dn and Zn symmetry create.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第6期1344-1347,共4页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61272253)资助
关键词
迭代函数系统
分形
对称
NIFS
复平面
iterated function systems
fractal images
symmetry
nonlinear systems
complex plane
作者简介
董洁,女,1969年生.硕士,副教授,研究方向为非线性动力系统计算机图形化E-mail:dong_jie_2002@163.com
陈宁,女,1958年生,博士,教授,研究方向为非线性动力系统计算机图形化
王凤英,女,1976年生,硕士,副教授,研究方向为非线性动力系统计算机图形化