期刊文献+

带有稳定学习算法的小波神经网络及应用 被引量:3

Wavelet Neural Networks with Stable Learning Algorithm and Its Application
在线阅读 下载PDF
导出
摘要 针对当系统存在未建模动态时,神经网络辨识易产生参数漂移和不稳定的问题,采用输入-状态稳定性(ISS,input-to-state stability)分析方法,获得小波神经网络权值矩阵和小波尺度参数的误差反传类时变学习算法,该算法不带有鲁棒修正即可以实现小波神经网络的鲁棒稳定性.仿真例子表明,此稳定学习算法优于一般的误差反传算法,并将带有稳定学习算法的小波神经网络用于污水处理过程出水水质COD(化学需氧量,chemical oxygen demand)的预测,获得了较好的效果. In the presence of unmodeled dynamics,the parameters' drift even instability may occur in the identification system of neural networks.Input-to-state stability(ISS)approach is applied to achieving the error backpropagation-like time-varying learning algorithm of weight matrix and wavelet scaling parameters in wavelet neural networks,of which the robust stability is guaranteed without robust modification.Simulations showed that the stable learning algorithm outperforms conventional error backpropagation ones,and the application of the algorithm to the prediction of COD in wastewater treatment process gets good results.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期305-308,316,共5页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展计划项目(2009CB320601) 国家自然科学基金重点资助项目(60534010) 国家创新研究群体科学基金资助项目(60521003) 高等学校学科创新引智计划项目(B08015)
关键词 小波神经网络 输入-状态稳定性 稳定学习算法 鲁棒稳定性 污水处理过程 化学需氧量 wavelet neural networks input-to-state stability stable learning algorithm robust stability wastewater treatment process COD(chemical oxygen demand)
作者简介 丛秋梅(1978-),女,内蒙古赤峰人,东北大学博士研究生;Correspondent: CONG Qiu-mei, E-mail: cong_ 0828@163. com 柴天佑(1947-),男,甘肃兰州人,东北大学教授,博士生导师,中国工程院院士; 余文(1965-),男,辽宁沈阳人,墨西哥国立理工大学教授,博士生导师.
  • 相关文献

参考文献8

  • 1Kreinovich V, Sirisacngtaksin O, Cabmn S. Wavelet neural networks are asymptotically optimal approximators for function of one variable [ C ]//Proceeding of IEEE ICNN. Florida, 1994 : 299 - 304.
  • 2Kasparian V, Celal B, Zhang H, et al. Davidon least squares- based learning algorithm for feedforward neural networks [J ]. Neural Networks, 1994,7(4) :661 - 670.
  • 3Thomas B B, Steven D B. Adaptive, global, extended Kalman filters for training feedforward neural networks[J]. Journal of Chemometrics, 2005,8 (6) : 391 - 407.
  • 4Yu W, Li X. Some stability properties of dynamic neural networks[J]. IEEE Trans Circuits Syst I, 2001,48(2) :256 - 259.
  • 5丁敬国,焦景民,昝培,刘相华.基于模糊聚类的PSO-神经网络预测热连轧粗轧宽度[J].东北大学学报(自然科学版),2007,28(9):1282-1284. 被引量:6
  • 6Yu S, Rong L, Chen W, et al. An improved BP neural network based on GA for 3D laser data repairing [ C] //IEEE Conference on Robotics, Automation and Meehatronies. Chengdu, 2008:571 - 576.
  • 7Jagannathan S, Lewis F L. Identification of nonlinear dynamical systems using multilayered neural networks [ J ]. Automatica, 1996,32(12) : 1707 - 1712.
  • 8Sontag E D. Input to state stability: basic concepts and results [J]. Lecture Notes in Mathematics, 2008,1932 : 163 - 220.

二级参考文献9

  • 1Nicklaus F P,Dieter L,Gunter S,et al.Application of neural networks in rolling mill automation[J].Iron and Steel Engineer,1995,72(2):33-36.
  • 2Ishii T,Wada S,Miyokawa M,et al.Recent technology in hot strip mill[C]//Proceedings of the 7th International Conference on Steel Rolling.Tokyo:The Iron and Steel Institute of Japan,1998:711-716.
  • 3Draeger A,Engell S,Ranke H.Model predictive control using neural networks[J].IEEE Control Systems,1995,15(5):61-66.
  • 4Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Piscataway:IEEE Service Center,1995:39-43.
  • 5Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc of the 1995 IEEE Int Conf on Neural Networks.Perth,1995:1942-1948.
  • 6Shi Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE Int Conf of Evolutionary Computation.Anchorage,1998:69-73.
  • 7Burel G.Blind separation of sources:a nonlinear neural algorithm[J].Neural Network,1992,5(6):937-947.
  • 8Tugnait J K.Adaptive blind separation of convolutive mixtures of independent linear signals[J].Signal Processing,1999,73(7):139-152.
  • 9胡贤磊,王昭东,于解民,刘相华.结合模型自学习的BP神经元网络的轧制力预报[J].东北大学学报(自然科学版),2002,23(11):1089-1092. 被引量:15

共引文献5

同被引文献49

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部