期刊文献+

小样本下两阶段MCMC参数估计方法——基于信用风险强度模型的研究 被引量:1

A Two-Stage McMC Approach to Estimate Parameters of Affine Jump Diffusion Process with Small-Size Samples
在线阅读 下载PDF
导出
摘要 应用我国金融市场数据估计信用风险强度模型参数时,常遇到由小样本而导致的偏差问题,对此本文提出了两阶段MCMC参数估计方法:第一阶段用Lee和Mykland的跳辨识方法估计跳跃项参数;第二阶段用MC-MC方法估计扩散和漂移项参数。误差分析的结果表明两阶段MCMC方法小样本下信用风险模型参数估计的效果要明显好于单纯的MCMC方法。作为应用,采用我国第一支个人住房抵押贷款支持证券"建元2005-1"的违约和提前还款数据,估计了信用风险强度模型的参数。 In the Chinese financial market, the bias caused by small-size sample is usually encountered to estimate parameters of credit risk intensity model. To solve this problem, this paper proposes a two-stage MCMC (Markov chain Monte Carlo) approach. In the first stage, we make use of non-parametric estimation method de- veloped by Lee and Mykland to estimate the parameters of jumps, and in the second stage, MCMC approach to the parameters of diffusion and drift. Then we compare the estimation error of the two-stage MCMC approach and MCMC approach. The former is less than the latter. At last, we make empirical analysis and stability analysis to default risk intensity model, using the default and prepayment data of "Jianyuan2005-1" which is the first MBS (Mortgage Backed Securities) in China.
出处 《运筹与管理》 CSCD 北大核心 2010年第1期126-131,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70771018) 教育部人文社科基金资助项目(05JA630005) 教育部新世纪优秀人才支持计划(2005年) 中国博士后科学基金资助课题(20070410350)
关键词 信用风险 两阶段MCMC方法 小样本参数估计 跳辨识 强度模型 default risk intensity model small-size samples parameter estimation a two-stage MCMC approach jump diffusion
作者简介 周颖颖(1982-),女,博士生,研究方向为结构化金融衍生品定价; 秦学志(1965-),男.教授,博士生导师,研究方向为金融工程、财务管理和保险精算等; 王玥(1978-).女,博士生,研究方向为银行信用风险管理。
  • 相关文献

参考文献12

  • 1王春峰,李汶华.小样本数据信用风险评估研究[J].管理科学学报,2001,4(1):28-32. 被引量:38
  • 2张明玉.小样本经济变量相关关系检测的数学模型[J].预测,1998,17(3):57-59. 被引量:9
  • 3Papalia R B. A composite generalized cross-entropy formulation in small samples estimation[ J]. Econometric Reviews, 2008, 27(4-6) : 596-609.
  • 4Chib S, Nardari F, Shephard N. Markov chain monte carlo methods for stochastic volatility models[ J]. Journal of Econometrics, 2002, 108(2) : 281-316.
  • 5胡素华,张世英,张彤.双指数跳跃扩散模型的McMC估计[J].系统工程学报,2006,21(2):113-118. 被引量:25
  • 6Raggi D. Adaptive MCMC methods for inference on affine stochastic volatility models with jumps[ J]. Econometrics Journal, 2005, 8(2): 235-250.
  • 7Lee S S, Mykland P A. Jumps in financial markets: a new nonparametric test and jump[J]. Review of Financial Studies, 2007.
  • 8Duffle D, Kan R. A yield model of Interest rates[J]. Mathematical Finance, 1996, 6: 379-406.
  • 9Jacquier E, Poison N, Rossi P. Bayesian analysis of stochastic volatility models[ J]. Journal of Business & Economic Statistics, 1994, 12: 371-417.
  • 10Kau J B, Keenan, D C, Smurov A A. Reduced form mortgage pricing as an alternative to option-pricing models[ J]. Journal of Estate Finance Economic, 2006, 33: 183-196.

二级参考文献34

  • 1王春峰,万海晖,张维.组合预测在商业银行信用风险评估中的应用[J].管理工程学报,1999,13(1):11-14. 被引量:68
  • 2胡素华,张彤,张世英.正态逆高斯扩散模型的MCMC估计[J].系统工程理论方法应用,2006,15(2):133-138. 被引量:5
  • 3余伟强.长寿风险的证券化探索[J].复旦学报(自然科学版),2006,45(5):664-669. 被引量:14
  • 4潘冠中,马晓兰.应该用哪一个模型来描述中国货币市场利率的动态变化[J].数量经济技术经济研究,2006,23(12):54-63. 被引量:11
  • 5[1]Blake D,Burrows W.Survivor bonds,helping to hedge mortality risk[J].Journal of Risk and Insurance,2001,68:339-348.
  • 6[2]Lin Y,Cox S H.Securitization of mortality risks in life annuities[J].Journal of Risk and Insurance,2005,72(2):227-252.
  • 7[3]Andrew J G Cairns,David Blake,Kevin Dowd.A two-facter model for stochastic mortality with parameter uncertainty,theory and calibration[J].The Journal of Risk and Insurance,2006,73(4):687-718.
  • 8[5]Michel Denuit,Pierre Devolder,Anne-C閏ile Goderniaux.Securitization of longevity risk:pricing survivor bonds with Wang transform in the Lee-Carter framework[J].The Journal of Risk and Insurance,2007,74(1):87-113.
  • 9[6]David Lando.Credit risk modeling:theory and application[M].Princeton University Press,2004.
  • 10[7]Duffle D,Singleton K J.Credit risk[M].Princeton University Press.2003.

共引文献76

同被引文献13

  • 1谢云山.信用风险与利率风险的相关性分析——利率市场化下商业银行的新型风险管理模式[J].国际金融研究,2004(10):51-60. 被引量:25
  • 2Cox J, Ingersoll J, Ross S. A theory of the term structure of interest rates [J]. Econometrica, 1985, 53:385-406.
  • 3Singleton K. Estimation of affine asset pricing models using the empirical characteristic function [J]. Journal of Econometrics, 2001,102 : 111 -141.
  • 4Kijima M, et al. Credit events and the valuation of credit derivatives of basket type [J]. Review of Derivatives Research, 2000,4 : 55 - 79.
  • 5Carling K, et al. Corporate credit risk modeling and the macroeconomy [J]. Journal of Banking and Finance, 2007,31:845- 868.
  • 6Mari C, Reno R. Credit risk analysis of mortgage loans: An application to the Italian market [J]. European Journal of Operational Research, 2005, 163:83-93.
  • 7Duffie D, Singleton K. Modeling term structures of defauhable bonds[J]. Review of Financial Studies, 1999,12 (4) : 687 - 720.
  • 8Duffle D. Credit risk modeling with affine processes [J]. Journal of Banking and Finance, 2005,29 : 2751 -2802.
  • 9Berndt A,et al. Measuring default risk premia from default swap rates and EDFs[Z]. Carnegie Mellon University, 2008.
  • 10Duffie D, et al. Credit risk: pricing, measurement, and management [M]. Princeton, NJ: Princeton University Press, 2003.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部