期刊文献+

应变补偿层对量子点生长影响的理论研究 被引量:3

Theoretical study on strain compensation layer for growth of quantum dots
原文传递
导出
摘要 量子点的光学特性与量子点的大小均匀性、密度、内部应变以及隔离层的厚度等有密切关系.文中从理论角度定量研究了GaNXAs1-X应变补偿层对InAs/GaAs量子点生长质量的改善作用,分析了应变补偿层对隔离层厚度减小的作用.讨论了应变补偿层的补偿位置和补偿层N组分X对量子点生长时局部应变和体系应变的补偿作用.分析了应变补偿层对体系应变的减少作用,并计算了相邻层量子点的垂直对准概率.研究结果对实验中应变补偿的优化和高质量量子点阵列的生长实现提供了理论依据. The optical properties of quantum dots have a close relationship with the size fluctuation,density,strain filed distribution of the dots and the spacer layer thickness. InAs/GaAs quantum dot with GaNXAs1-X strain compensation layers (SCL) is theoretically investigated for improving the crystal quality. The reduction effects of the spacer thickness are discussed quantitatively. The influence of the location and the N concentration of the GaNXAs1-X SCL on compensation of the strain formed on quantum dots (QDs) and the system is also discussed. The reduction effect of SCL on strain of system is analyzed and the vertical alignment probability between the adjacent layers is calculated. Our results can provide a theoretical basis for finding the optimal properties of SCL to realize the high quality multi-QD layer.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第2期765-770,共6页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2009AA03Z405) 国家自然科学基金(批准号:60644004)资助的课题~~
关键词 应变补偿 量子点 strain compensation quantum dot
作者简介 通讯联系人.E-mail:yuzhongyuan30@gmail.com
  • 相关文献

参考文献23

  • 1Arakawa Y,Sakaki H 1982 Appl. Phys. Lett. 40 939.
  • 2Luque A,Marti A 1997 Phys. Rev. Lett. 78 5014.
  • 3Ishii-Hayase J, Akahane K, Yarnamoto N, Kujiraoka M, Inoue J, Ema K,Tsuchiya M,Sasaki M 2006 J. Lumin. 318 119.
  • 4Sugawara M, Ebe H, Hatori N, Ishida M, Arakawa Y, Akiyama T, Otsubo K,Nakata Y 2004 Phys. Rev. B 69 235332.
  • 5Oshima R, Nakamura Y, Takata A, Okada Y 2008 J. Cryst. Growth 310 2234.
  • 6Oshima R, Takata A, Okada Y 2008 Appl. Phys. Lett. 93 083111.
  • 7Nuntawong N,Xin Y C, Birudavolu S, Wong P S, Huang S 2005 Appl. Phys. Lett. 86 193115.
  • 8Solomon G S,Trezza J A,Marshall A F,Harris Jr J S 1996 Phys. Rev. Lett. 76 952.
  • 9Wasilewski Z R,Fafard S,McCaffrey J P 1999 J. Cryst. Growth 201 1131.
  • 10Wang X D, Liu N, Shih C K, Govindaraju S, Holmes Jr A L 2004 Appl. Phys. Lett. 85 1356.

二级参考文献8

共引文献12

同被引文献46

  • 1吴巨,王占国.InAs/GaAs量子点材料和激光器[J].微纳电子技术,2005,42(11):489-494. 被引量:4
  • 2小长井诚,山口真史,近藤道雄.太阳电池的基础与应用(日文)[M].东京:培风馆,2010.
  • 3冈田至崇 八木修平 大岛隆治.利用量子点超晶格的高效率太阳电池的开发.应用物理(日文),2010,.
  • 4NOZIK A J. Quantum dot solar cells[J]. Physica: E, 2002, 14: 115- 120.
  • 5LUGUE A, MARTI A. Increasing the effieienct of ideal solar cells by photo induced transition at inermediate levels [J]. Phys Rev Lett, 1997, 78 (26) : 5014- 5017.
  • 6LUQUE A, MARTIA, LOPEZ N, et al. Operation of the intermediate band solar cell under nonideal space charge re- gion condition and half filling of the intermediate band [J]. J Appl Phys, 2006, 99 (9): 094503-1- 094503-9.
  • 7AROUTIOUNIAN V, PETROSYAN S, KHACHATRYAN A. Quantum dot solar cells [J]. J Appl Phys, 2001, 89 (4) : 2268 - 2273..
  • 8WEI G, FORREST S R. Intermediate-band solar cells em- ploying quantum dots embedded in an energy fence barrier [J]. Nano Lett, 2007, 7 (1):218-222.
  • 9SABLON K A, LITTLE J W, OLVER K A, et al. Effects of AIGaAs energy barriers on InAs/GaAs quantum dot solar cells[J]. J Appl Phys, 2010, 108 (7) : 074305-1 - 074305-4.
  • 10LAGHUMAVARAPU R B, EL-EMAWY M, NUNTAWONG N, et al. Impoved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers [J]. Appl Phys Lett, 2007, 91 (24): 2431151-1-243115-3.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部