期刊文献+

基于支持向量机的目标跟踪研究 被引量:2

Study of object tracking based on support vector machine
在线阅读 下载PDF
导出
摘要 把目标跟踪看作为目标和背景在时序上的分类问题来进行处理,选择支持向量机作为分类器,完成相应的目标跟踪任务。在跟踪过程中,采用扰动前景区域和按步长抽取背景的方法得到数量相当的正负样本;建立图像的积分直方图索引,通过索引之间的加减快速获取区域边缘和纹理特征向量;将新样本集合与前期获取的支持向量混合起来一并训练,实现分类器的在线更新。用经典图像序列进行实验,实验结果表明,该算法具有良好的跟踪效果。 Considering object tracking as a classify problem on time series signal,support vector machine(SVM) is selected here as the classifier to complete the task.During the process of object tracking,a relative large number of positive and negative samples are gained by the way of disturbing the foreground region and sampling the background region by steps.Building the index of integral histograms,the edge features and texture features are rapidly extracted by fast calculating on the index.On-line updating the SVM is achieved by training the samples and the historical support vectors together.Experimental results on traditional video clips show the accuracy and robustness of the proposed algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第12期4210-4212,4245,共4页 Computer Engineering and Design
基金 徐州师范大学自然科学基金项目(09XLA19)
关键词 支持向量机 目标跟踪 积分直方图 特征向量 在线更新 SVM object tracking integral histogram eigenvectors on-line updating
作者简介 张谢华(1977-),女,安徽宿松人,博士研究生,副教授,研究方向为图像处理、运动目标跟踪; 路梅(1976-),女,江苏徐州人,硕士,研究方向为图像处理; 田敏(1982-),男,安徽芜湖人,硕士,研究方向为运动目标跟踪。E-mail:xuzhouzxhyt@163_com
  • 相关文献

参考文献15

二级参考文献89

  • 1李春花,卢正鼎.一种基于支持向量机的图像数字水印算法[J].中国图象图形学报,2006,11(9):1322-1326. 被引量:23
  • 2田新梅,吴秀清,刘莉.大样本情况下的一种新的SVM迭代算法[J].计算机工程,2007,33(8):205-207. 被引量:5
  • 3陈灿,胡峰松,周海燕.基于尺度不变特征点的抗几何攻击水印算法[J].计算机工程,2007,33(11):157-159. 被引量:5
  • 4Vapnik V N.The nature of statistical learning theory[M].New York: Springer-Verlag, 1995.
  • 5Cristinanini N,Shawe-Taylor J.An introduction to support vector machines[M].Cambridge: Cambridge University Press, 2000.
  • 6Vapnik V N.Statistical learning theory[M].New York:Wiley,1998.
  • 7Zhang Xue-gong.Using class-center vectors to build support vector machines[C]//Wisconsin:IEEE Conference on Neural Networks for Signal Processing, 1999:3-11.
  • 8Lin Chun-fu,Wang Sheng-de.Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13 (2) : 464-471.
  • 9Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 10边肇祺,张学工.模式识别[M].北京:清华大学出版社,2007.

共引文献107

同被引文献27

  • 1冈萨雷斯.数字图像处理(Matlab版)[M].北京:电子工业出版社,2009.
  • 2A. Yilmaz, O. Javed, M. Shah. Object tracking : A sur- vey [ J]. ACM Computing Surveys (CSUR) ,2006,38(4) :13.
  • 3D. Ross, J. Lim, R. Lin, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008,77 ( 1 - 3 ) : 125 - 141.
  • 4A. Adam, E. Rivlin, I. Shimshoni. Robust fragments- based tracking using the integral histogram [ C ]. CVPR,2006 IEEE Computer Society Conference on. IEEE,2006:798 - 805.
  • 5X. Mei, H. Ling. Robust visual tracking using 11 mini- mization[ C]. Computer Vision ,2009 IEEE 12th Inter- national Conference on. IEEE ,2009 : 1436 - 1443.
  • 6H. Grabner, M. Grabner, H. Bischof. Real-time tracking via on-line boosting[ C]. BMVC,2006:6.
  • 7B. Babenko, M. Yang, S. Belongie. Robust object tracking with online multiple instance learning [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on ,2011,33 ( 8 ) : 1619 - 1632.
  • 8Qing Wang, Feng Chen, Wenli Xu, et al. Object Track- ing via Partial Least Squares Analysis [ J]. Image Pro- cessing, IEEE Transactions on, 2012,21 ( 10 ) :4454 - 4465.
  • 9Qing Wang, Feng Chen, Wenli Xu, et al. Online Dis- criminative Object Tracking with Local Sparse Repre- sentation [ C ]. Applications of Computer Vision (WACV), 2012 1EEE Workshop on. IEEE, 2012: 425 - 432.
  • 10X. Li, W. Hu, Z. Zhang, et al. Robust visual tracking based on incremental tensor subspace learning [ C ]. Computer Vision, 2007. ICCV 2007. IEEE 11 th International Conference on. IEEE ,2007 : 1 - 8.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部