期刊文献+

基于FastICA的语音分离与图像分离

Study on Speech Separation and Image Separation Based on FastICA
在线阅读 下载PDF
导出
摘要 独立分量分析(ICA)基于信号的高阶统计量,能从混合信号中分离出既具有统计独立性又具有非高斯性的源信号,在诸多ICA算法中,固定点算法(也称FastICA)以其收敛速度快、分离效果好被广泛应用于信号处理领域。在介绍ICA的基本模型与FastICA算法的原理后,分别对混合的语音信号与图像信号进行了分离实验,仿真结果表明FastICA应用于语音分离与图像分离,效果都很好。 Independent Component Analysis (ICA) based on the higher-order statistics of signals, can separate source signals which are both statistically independent and non-Gaussian from the mixing signals. The fixed-point algorithm ,also called FastICA, has fast convergence rate and good separation result, so it can be widely used in the signal processing. In this paper, the basic model of ICA and the principle of the FastICA algorithm are introduced. And then the simulation experiments on separating the mixing speech signals and mixing image signals were made. Based on the experimental results, it comes to the conclusion that the FastICA algorithm has good separation performance when it applied to speech separation or image separation.
出处 《电脑编程技巧与维护》 2009年第16期90-91,共2页 Computer Programming Skills & Maintenance
关键词 独立分量分析 固定点算法 语音分离 图像分离 ICA FastICA Speech separation Image Separation
  • 相关文献

参考文献5

二级参考文献63

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205.
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 4[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 5[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 6[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 7[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 8[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 9[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 10[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.

共引文献378

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部