期刊文献+

基于二维小波变换的独立分量分析方法及其在图像分离中的应用 被引量:6

ICA Method Based on 2-D Wavelet Transform and Its Application to Image Separation
在线阅读 下载PDF
导出
摘要 该文提出了一种新的基于二维小波变换的独立分量分析方法。研究表明,当各个源信号的概率密度分布相同时,自然梯度算法的稳态误差与源信号峭度的平方成反比。因此,对峭度更大的小波域高频子图像进行独立分量分析可以获得更高的分离精度。同时,高频子图像的大小为源图像的1/4,计算量大大减小,因此算法收敛的速度更快。最后,将该方法用于混合图像的盲分离,通过一系列实验,证实该方法是有效的。 In this paper, a kind of new independent Component Analysis (ICA) method based on 2-dimensional wavelet transform is proposed. According to the research, the steady-state error of the Natural Gradient Algorithm (NGA) is inverse proportional to the quadratic of the kurtosis of the sources when the probability distribution function of each source is the same. In addition, the kurtosis of the detail coefficients in wavelet domain is always bigger than that of the original images, so the separation precision of ICA method based on 2-dimensional wavelet transform is higher than that of the traditional ICA method. Furthermore, the size of the sub-image in 2-dimensional wavelet domain is a quarter of the source image, so the convergence speed of the proposed method is faster. Finally, this method is used to separate the mixed images. A set of experiments in different situations is done and the simulation results show that the proposed method is effective.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第3期471-475,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60472103)资助课题
关键词 小波变换 独立分量分析 自然梯度算法 图像分离 Wavelet transform, Independent Component Analysis (ICA), Natural Gradient Algorithm (NGA), Image separation
作者简介 王明祥:男,1974年生,博士生,研究方向为图像处理、盲信号处理和神经网络等. 方勇:男,1964年生,教授,博士生导师,研究方向为智能信息系统、通信信号处理和神经网络等. 胡海平:男,1966年生,博士,讲师,研究方向为应用数学、图像处理和小波变换等,
  • 相关文献

参考文献12

  • 1Jutten C, Herault J. Blind separation of sources. Part Ⅰ: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991,24(1): 1 - 10.
  • 2Comon P. Independent component analysis: A new concept?Signal Processing, 1994, 36(3): 287 - 314.
  • 3Bell A, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation,1995, 7(6): 1129 - 1159.
  • 4Amari S, Chen T P, Cichocki A. Stability analysis of learning algorithms for blind source separation. Neural Networks, 1997,10(8): 1345- 1351.
  • 5Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
  • 6Te-Won Lee, Lewicki M S. Unsupervised image classification,segmentation, and enhancement using ICA mixture models. IEEE Trans. on Image Processing, 2002, 11(3): 270 - 279.
  • 7Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis. IEEE Trans. on Neural Networks, 2002, 13(6): 1450 - 1464.
  • 8Zhang S, Rajan P K. Independent component analysis of digital image watermarking. IEEE International Symposium on Circuits and Systems, Scottsdale, Arizona, 2002, 3: Ⅲ217 - Ⅲ220.
  • 9Pham D T, Garat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. on Signal Processing, 1997, 45(7): 1712 - 1725.
  • 10Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans. on Image Processing, 1992,1(2): 205 - 220.

同被引文献63

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部