摘要
为了有效检测多目标优化进化算法的性能,从3个方面进行多目标优化测试问题的设计,即约束条件、最优解分布的均匀性、算法逼近Pareto最优前沿的难度,采用NSGA-Ⅱ算法对这些测试问题进行仿真实验,并将算法求得的最优解可视化。结果显示,测试问题能够有效检测算法在上述3方面的性能。
In order to test and evaluate the performance of Multi-Objective Evolutionary Algorithm(MOEA), multi-objective optimization test problems are suggested in this paper on the following perspectives: constrained condition, uniform representation of Pareto-optimal solutions and hindrance to reach the global Pareto-optimal front. NSGA- Ⅱ is used to make experiments on these test problems and the non-dominated fronts are visualized. Test results show that these problems can test the algorithm's performance effectively in above three aspects.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第14期238-240,共3页
Computer Engineering
基金
西南大学青年基金资助项目(SWUQ2006013)
关键词
多目标优化
进化算法
PARETO最优
测试问题
multi-objective optimization
evolutionary algorithms
Pareto-optimality
test problems
作者简介
程鹏(1977-),男,讲师、硕士,主研方向:进化计算;E-mail:chengp@swu.edu.cn
张自力,教授、博士