期刊文献+

多目标进化算法测试问题的设计与分析 被引量:1

Design and Analysis of Test Problems for Multi-Objective Evolutionary Algorithms
在线阅读 下载PDF
导出
摘要 为了有效检测多目标优化进化算法的性能,从3个方面进行多目标优化测试问题的设计,即约束条件、最优解分布的均匀性、算法逼近Pareto最优前沿的难度,采用NSGA-Ⅱ算法对这些测试问题进行仿真实验,并将算法求得的最优解可视化。结果显示,测试问题能够有效检测算法在上述3方面的性能。 In order to test and evaluate the performance of Multi-Objective Evolutionary Algorithm(MOEA), multi-objective optimization test problems are suggested in this paper on the following perspectives: constrained condition, uniform representation of Pareto-optimal solutions and hindrance to reach the global Pareto-optimal front. NSGA- Ⅱ is used to make experiments on these test problems and the non-dominated fronts are visualized. Test results show that these problems can test the algorithm's performance effectively in above three aspects.
作者 程鹏 张自力
出处 《计算机工程》 CAS CSCD 北大核心 2009年第14期238-240,共3页 Computer Engineering
基金 西南大学青年基金资助项目(SWUQ2006013)
关键词 多目标优化 进化算法 PARETO最优 测试问题 multi-objective optimization evolutionary algorithms Pareto-optimality test problems
作者简介 程鹏(1977-),男,讲师、硕士,主研方向:进化计算;E-mail:chengp@swu.edu.cn 张自力,教授、博士
  • 相关文献

参考文献5

  • 1Van Veldhuizen D A.Mutio-bjective Evolutionary Algorithms:Classification,Analysis,and New Innovation[D].Wright-Patterson AFB,Ohio:Graduate School of Engineering of the Air Force Institute of Technology,Air University,1999.
  • 2Huband S,Barone L,While L,et al.A Scalable Multi-objective Test Problem Toolkit[C]//Proceedings of the Evolutionary Multi-criterion Optimization'05.Berlin,Germany:Springer,2005:280-295.
  • 3Deb K.Multi-objective Genetic Algorithms:Problem Difficulties and Construction of Test Problems[J].Evolutionary Computation,1999,7(3):205-230.
  • 4Deb K,Thiele L,Laumanns P,et al.Scalable Test Problems for Evolutionary Multiobjective Optimization[M]//Abraham A,Jain L,Goldberg R.Evolutionary Multi-objective Optimization:Theoretical Advances and Applications.[S.1.]:Springer,2005.
  • 5Deb K,Pratap A,Agrawal S,et al.A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-Ⅱ[J].IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.

同被引文献6

  • 1Zitzler E.Evolutionary Algorithms for Multiobjective Optimization:Methods and Applications[D].Zurich,Switzerland:Swiss Federal Institute of Technology,1999.
  • 2Fleiscber M.The Measure of Pareto Optima:Applications to Multi-objective Metaheuristics[M]//Evolutionary Multiobjective Optimization.Berlin,Germany:Springer-Verlag,2003:519-533.
  • 3While L,Hingston P,Barone L,et al.A Faster Algorithm for Calculating Hypervolume[J].IEEE Transactions on Evolutionary Computation,2006,10(1):29-38.
  • 4Beume N,Rudolph G.Faster S-metric Calculation by Considering Dominated Hypervolume as Klee's Measureproblem[C]//Proc.of the 2nd IASTED Conference on Computational Intelligence.Anaheim,USA:ACTA Press,2006.
  • 5Bader J,Deb K,Zitzler E.Faster Hypervolume-based Search Using Monte Carlo Sampling[C]//Proc.of MCDM'08.Heidelberg,Germany:[s.n.],2010.
  • 6While L,Bradstreet L,Barone L,et al.Heuristics for Optimizing the Calculation of Hypervolume for Multiobjective Optimization Problem[C]//Proc.of IEEE Congress on Evolutionary Computation.Edinburgh,UK:[s.n.],2005.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部