期刊文献+

FH-MOEA:基于快速计算空间超体积贡献机制的多目标优化进化算法(英文)

FH-MOEA:multi-objective evolutionary algorithm based-on fast hyper-volume contribution approach
在线阅读 下载PDF
导出
摘要 研究在多目标优化进化算法中引入强选择压力机制,以促使搜索群体在有效保证多样性的前提下向Pareto最优前沿迅速收敛,并引入空间超体积测度.针对当前空间超体积测度计算代价高的问题,提出了一种基于空间切片的快速空间超体积贡献计算方法FH.基于该方法,发展出一种基于快速计算空间超体积贡献机制的多目标进化算法(FH-MOEA),并应用于解决复杂的多目标优化问题.用一组测试问题对算法性能进行检验,实验结果表明,该算法在收敛性和分布性两方面均比著名的NSGA-Ⅱ算法有显著提高. The method for incorporating strong selection pressure was introduced into multi-objective evolutionary optimization algorithms (MOEAs) to force the evolution population approaches rapidly towards the Pareto optimal front with a spread as uniform as possible over the Pareto front. An effective measure called "hyper-volume contribution" was adopted to provide the strong selection pressure. Based on the fast method for calculating hyper-volume contribution proposed, a new multi-objective optimization evolutionary algorithm multi-objective evolutionary algorithm based on fast hyper-volume contribution (FH-MOEA) was proposed for the complex multi objective optimization problem (MOP) tasks. Via a suite of designed experiments, it is distinctly indicated that FH-MOEA has a great advantage over the famous MOEA "NSGA- Ⅱ " in terms of both convergence and diversity.
作者 王瑜 李斌
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第7期802-809,共8页 JUSTC
基金 National Natural Science Foundation of China(60401015,60572012) Natural Science Foundation of Anhuiprovince(050420201).
关键词 多目标优化 超体积贡献 强选择压力机制 遗传算法 智能计算 multi-objectives optimization hyper-volume contribution strong selection pressure mechanism genetic algorithm intelligence computation
作者简介 Biography:WANG Yu, PhD candidate. Research field: evolutionary computation, multi-objective optimization, link biologic concept to evolutionary computation and application of evolutionary computation in power system domain. E-mail: wyustc@mail. ustc. edu. cn Corresponding author: LI Bin, PhD/associate professor. E-mail: binli@ ustc. edu. cn
  • 相关文献

参考文献18

  • 1Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem [ J ]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3) : 315-328.
  • 2Mendoza F, Bernal-Agustin J L, Dominguez-Navarro J A. NSGA and SPEA applied to multiobjective design of power distribution systems[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1 938-1 945.
  • 3Handl J, Kell D B, Knowles J. Multiobjective optimization in bioinformatics and computational biology [ J ]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4 (2): 279-292.
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA- Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182-197.
  • 5Zitzler E, Laumanns M, Thiele L. SPEA2. improving the strength pareto evolutionary algorithm[R]. TIK Report 103, Swiss Federal Institute Technology, Zurich, Switzerland, 2001.
  • 6Come D W, Knowles J D, Oates M J. The Pareto develop based selection algorithm for multiobjective optimization [C]// Proceedings of Parallel Problem Solving from Nature VI. Berlin, Germany, 2000: 839- 848.
  • 7Pelikan M, Goldberg D E, Lobo F. A survey of optimization by building and using probabilistic models [R]. Illegal Technique Report, 99018, 1999.
  • 8Zhang Q F, Zhou A M, Jin Y C. RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm [ J ]. IEEE Transactions on Evolutionary Computing, 2008, 12(1):41-63.
  • 9Deb K, Sinha A, Kukkonen S. Multi-objective test problems, linkages, and evolutionary methodologies [C]// Proceedings of the 8th annual Conference on Genetic and Evolutionary Computation. Washington: ACM Press, 2006:1 141-1 148.
  • 10Knowles J D, Corne D W. Properties of an adaptive archiving algorithm for storing nondominated vectors[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2) : 100-116.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部