期刊文献+

三维Poisson方程特征值的四种有限元解及比较 被引量:2

Four Finite Element Solutions and Comparison of Problem for the Three-dimensional Poisson Equation Eigenvalue
原文传递
导出
摘要 应用三维EQ1rot元、三维Crouzeix-Raviart元、八节点等参数元、四面体线性元计算三维Poisson方程的近似特征值.计算结果表明:三维EQ1rot元和三维Crouzeix-Raviart元特征值下逼近准确特征值,八节点等参数元、四面体线性元特征值上逼近准确特征值,三维EQr1ot元和三维Crouzeix-Raviart元外推特征值下逼近准确特征值.计算结果还表明三维Crouzeix-Raviart元是一种计算效率较高的非协调元. We apply the three-dimensional non conforming Q1^rot finite element, three-dimensional non conforming Crouzeix-Raviart tetrahedron finite element, eight isoparametric node finite element and tetrahedral linearity finite element to computing the approximate eigenvalue of three-dimensional Poisson equation. The numerical experiments show that three- dimensional non-conforming Q1^rot, element and Crouzeix-Raviart tetrahedron finite element approximate eigenvalues from below, eight isoparametrie node finite element and tetrahedral linearity finite element approximate eigenvalues from above, three-dimensional non-conforming Q1^rot element and Crouzeix-Raviart tetrahedron finite element approximate extrapolation eigenvalues of conjecture from below. At the same time, the numerical experiments also show that computational efficiency of the three-dimensional non-conforming Crouzeix-Raviart tetrahedron finite element is so much high.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第8期212-223,共12页 Mathematics in Practice and Theory
基金 国家自然科学基金(10761003)
关键词 三维EQ^rot元 三维Crouzeix—Raviart元 三维Poisson方程 特征值 three-dimensional Q1^rot finite element three-dimensional Crouzeix-Raviart tetrahedral finite element three-dimensional Poisson equation eigenvalue
  • 相关文献

参考文献3

二级参考文献11

  • 1朱起定 林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989..
  • 2Eriksson, K., Estep, D., Hansbh, D., etal., Computational differential equations, Cambridge University Press, Cambridge, 1996.
  • 3Lin Qun, Finite Element Method: Accuracy and Extrapolation(to appear).
  • 4Rannacher, R. Turek, S., Simple nonconforming quadrilateral stokes element, Numer. Methods for Partical Differential Equations, 8(1992) 97-111.
  • 5Ciarlet, P.G., The Finite Element Method for Elliptic Problem, North-Holland publ., Amstardam,1978.
  • 6Blum,H. and Rannacher, R.,Finite element eigenvalue computation on domains with reentrant corners using Richardson's extrapolation, J. comp. Math, 8(1990) 321-332.
  • 7Lin, Q., Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners, Numer. Math., 58(1991) 631-640.
  • 8Blum, H., Lin, Q. and Rannacher, R., Asymptotic error expansion and Richardson extrapolation for linear finite element, Numer. Math., 49(1986)11-37.
  • 9Srinivasan Kesavan. Homogenization of elliptic eigenvalue problems: Part 1[J] 1979,Applied Mathematics & Optimization(1):153~167
  • 10Srinivasan Kesavan. Homogenization of elliptic eigenvalue problems: Part 2[J] 1979,Applied Mathematics & Optimization(1):197~216

共引文献33

同被引文献19

  • 1YANG YiDu 1 ,ZHANG ZhiMin 2 & LIN FuBiao 11 School of Mathematics and Computer Science,Guizhou Normal University,Guiyang 550001,China,2 Department of Mathematics,Wayne State University,Detroit,MI 48202,USA.Eigenvalue approximation from below using non-conforming finite elements[J].Science China Mathematics,2010,53(1):137-150. 被引量:15
  • 2陈纪修.数学分析[M].北京:高等教育出版社,2002..
  • 3同济大学数学系.高等数学(第六版)[M].北京:高等教育出版社,2012.
  • 4赵树嫄.微积分(第三版)[M].北京:中国人民大学出版社,2007.
  • 5列夫·托尔斯泰(刘辽逸译).战争与和平[M].北京:人民文学出版社,1987.
  • 6Lin Q and Lin J F.Finite element methods:accuracy and improvement[M].Science Press,Beijing,2006.
  • 7Li M X,Lin Q and Zhang S H.Extrapolation and superconvergence of the Steklov eigenvalue problem[J].Adv Comput Math,2010,33:25-44.
  • 8Li Q,Lin Q and Xie H.Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations[J].Appl Math,2013,58:129-151.
  • 9林府标,杨一都.有限元二网格离散方案EQ_1^(rot)元特征值下逼近准确特征值[J].贵州师范大学学报(自然科学版),2008,26(2):68-74. 被引量:2
  • 10杨一都.特征值问题迭代伽略金法与Rayleigh商加速[J].工程数学学报,2008,25(3):480-488. 被引量:6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部