摘要
应用三维EQ1rot元、三维Crouzeix-Raviart元、八节点等参数元、四面体线性元计算三维Poisson方程的近似特征值.计算结果表明:三维EQ1rot元和三维Crouzeix-Raviart元特征值下逼近准确特征值,八节点等参数元、四面体线性元特征值上逼近准确特征值,三维EQr1ot元和三维Crouzeix-Raviart元外推特征值下逼近准确特征值.计算结果还表明三维Crouzeix-Raviart元是一种计算效率较高的非协调元.
We apply the three-dimensional non conforming Q1^rot finite element, three-dimensional non conforming Crouzeix-Raviart tetrahedron finite element, eight isoparametric node finite element and tetrahedral linearity finite element to computing the approximate eigenvalue of three-dimensional Poisson equation. The numerical experiments show that three- dimensional non-conforming Q1^rot, element and Crouzeix-Raviart tetrahedron finite element approximate eigenvalues from below, eight isoparametrie node finite element and tetrahedral linearity finite element approximate eigenvalues from above, three-dimensional non-conforming Q1^rot element and Crouzeix-Raviart tetrahedron finite element approximate extrapolation eigenvalues of conjecture from below. At the same time, the numerical experiments also show that computational efficiency of the three-dimensional non-conforming Crouzeix-Raviart tetrahedron finite element is so much high.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第8期212-223,共12页
Mathematics in Practice and Theory
基金
国家自然科学基金(10761003)