期刊文献+

基于多目标遗传算法的混合动力电动汽车控制策略优化 被引量:42

Multi-objective Optimization of Hybrid Electric Vehicle Control Strategy with Genetic Algorithm
在线阅读 下载PDF
导出
摘要 混合动力电动汽车是一个高度复杂的非线性系统,并且影响其控制策略的参数较多,要对这样的系统进行优化,常规的优化算法显得无能为力,模型的精确程度也直接影响了选取参数的可靠性。应用汽车动力性、排放性高级模拟分析软件AVLCRUISE,联合Matlab/Simulink软件,建立合动力电动城市客车整车动态性能仿真分析模型,以百公里油耗和排放指标为优化目标,运用多目标遗传优化算法,针对欧洲、日本及中国的城市公交循环工况对混合动力系统工作模式的选择和能量流的分配进行全局优化,减少了运算时间,获得一组可靠的可行解,精确地确定出控制逻辑参数。该解集在很大程度上同时提高了原车的燃料经济性和排放性能,并且为混合电动车的设计和控制提供了一个适宜的选择范围,设计者可以按不同的要求进行不同的方案选择。 Hybrid electric vehicle(HEV) is a very complicated non-linear system, whose performance is affected by lots of control parameters. To optimize this system, the routine optimization approach is inefficient, and the reliability of optima depends on the precision of model. An HEV bus dynamic simulation model is built for performance analysis by the interlinking of advanced software AVL CRUISE and MATLAB/Simulink. For achieving minimum fuel consumption and emissions, a multi-objective genetic algorithm(GA) optimization method is applied to getting the optima of work modes and energy distribution in different city bus cycles, which finds the compatible control logic parameters and saves much time. The feasible solution can improve the fuel economy and emissions simultaneously and provide wider choices for different requirements in HEV design.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第2期36-40,共5页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划资助项目(863计划 2006AA11A183)
关键词 混合动力电动汽车 控制策略优化 多目标遗传算法 Hybrid electric vehicle Optimization of control strategy Multi-objective genetic algorithm
作者简介 张昕,女,1976年出生,博士,讲师。主要研究方向为车辆系统动力学与电子控制。E-mail:xinzhang@bjtu.edu.cn
  • 相关文献

参考文献9

  • 1FISH S, SAVOIE T B. Simulation-based optimal sizing of hybrid electric vehicle components for specific combat missions[J]. IEEE Transaction on Magnetics, 2001, 37: 485-488.
  • 2WIPKE K, MARKEL T, NELSON D. Optimizing energy management strategy and degree of hybridization for a hydrogen fuel cell SUV[C]//18th Electric Vehicle Symposium, Berlin, Germany, 2001.
  • 3WANG Q, SPRONCK P, TRACHT R. An overview of genetic algorithms applied to control engineering problems[C]// 2003 Inernational Conference on Machine Learning and Cybernetics, 2003:1 651-1 656.
  • 4HASANZADEH A, ASAEI B, EMADI A. Optimum design of series hybrid electric buses by genetic algorithm[C]//IEEE ISLE, Dubrovnik, Croatia, 2005.
  • 5SCHOEGGL P, KRIEGLER W. Virtual optimization of vehicle and powertrain parameters with consideration of human factors[R]. SAE Paper 2005-01-1945.
  • 6DIAS A H F, DE VASCONCELOS J A. Multiobjective genetic algorithms applied to solve optimization problems[J]. IEEE Transactions on Magnetics, 2002, 38: 1 133-1 136.
  • 7Cruise 3.0 user guide[M]. Austria: AVL List, 2005.
  • 8张欣,刘溧,于海生.混合动力电动汽车制动系统回馈特性仿真[J].中国公路学报,2006,19(3):111-116. 被引量:15
  • 9MORTEZA M G, AMIR P. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J]. Journal of the Franklin Institute, 2006: 420-435.

二级参考文献7

共引文献14

同被引文献315

引证文献42

二级引证文献268

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部