期刊文献+

四次C-Bézier曲线的降阶逼近研究 被引量:2

Degree Reduction of 4-degree C-Bézier Curves
在线阅读 下载PDF
导出
摘要 给出了C-Bezier曲线的退化条件,应用控制顶点的扰动和优化方法求扰动的约束最优解,根据不同的端点条件,获得相应的降阶逼近方法.同时,分析给出算法的误差界,针对C-Bezier曲线的特点,用极限手段考察与Bezier降阶的相互关系,并用算例进行了分析比较. Degenerating condition C-Bezier curves are put forward. Applying perturbation of controlled top and the constraint optimization, an error of the degree reduction is also estimated. Further the scheme is combined with a subdivision algorithm to generate lower degree curves with lower error. The relationships between degree reduction of C-Bezier curves and degree reduction of Bezier curves are derived.
出处 《北华大学学报(自然科学版)》 CAS 2009年第1期10-17,共8页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(70471084)
关键词 C-BÉZIER曲线 升阶 降阶 逼近 扰动约束 C-Bezier curve Degree elevation Degree reduction Approximation Perturbation constraints
作者简介 沈仙华(1979-),女,讲师,主要从事计算几何研究.
  • 相关文献

参考文献5

二级参考文献11

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:237
  • 2[1]Nielson G.CAGD's Top Ten:What to Watch[J].IEE Computer Graphics and Applications,1993,13(1):35-37.
  • 3[2]Chen Qinyu,Wang Guozhao.A Class of Bézier-like Curves[J].CAGD,2003,20:29-39.
  • 4[4]TNT Goodman.Properties of Beta-splines[J].J.of Approx.Theory,1985,44:132-152.
  • 5[5]CA Micchelli.Mathematical Aspects of Geometric Modeling[M].Philadelphia:Society for Industrial and Applied Mathe Maties,1995.109.
  • 6[6]Barsky BA,Derose TD.Geometric Continuity of Parametric Curves:Constructions of Geometrically Continuous Splices[J].IEEE CG & a,1990,10:11.
  • 7Helmut Pottmann,Michael G. Wagner. Helix splines as an example of affine Tchebycheffian splines[J] 1994,Advances in Computational Mathematics(1):123~142
  • 8胡事民,朱翔,孙家广.基于约束优化的 NURBS曲面形状修改(英文)[J].软件学报,2000,11(12):1567-1571. 被引量:12
  • 9樊建华,邬义杰,林兴.C-Bézier曲线分割算法及G^1拼接条件[J].计算机辅助设计与图形学学报,2002,14(5):421-424. 被引量:28
  • 10吕勇刚,汪国昭,杨勋年.均匀三角多项式B样条曲线[J].中国科学(E辑),2002,32(2):281-288. 被引量:43

共引文献265

同被引文献12

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:237
  • 2CHEN Q Y,WANG G Z.A class of Bézier-like curves[J].Computer Aided Design,2003(1):29-39.
  • 3Hoschek J.Approximation of spline curves[J].CAGD,1987,4(1):59-66.
  • 4Watkins M.,Worsey,A.Degree reduction for B~zier curves[J].CAD,1988,20(7):398-405.
  • 5Lachance MA.Chebychev economization for parametric surface[J].CAGD,1988,5(3):195-208.
  • 6Eck M.Degree reduction of B6zier curves[J].CAGD,1993,10(4):237-251.
  • 7Bogacki P.Weinnstein,S.,Xu,Y.Degree reduction of B6zier curves by uniform approximation with endpoint interpolation[J].CAD,1995,27 (9):651-661.
  • 8Hu Shiming,Sun Jiaguang,Jin Tongguang,Wang Guozhao.Approximate degree reduction of B~zier curves [J].Tsinghua Science and Technology,1998,3(2):997-1000.
  • 9许凯,赵新明.基于拐点分割的Bezier曲线降阶[J].上海交通大学学报,2007,41(8):1223-1226. 被引量:4
  • 10王文涛.C-Bézier曲线降阶逼近[J].浙江大学学报(理学版),2009,36(4):396-400. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部