摘要
给出了C-Bezier曲线的退化条件,应用控制顶点的扰动和优化方法求扰动的约束最优解,根据不同的端点条件,获得相应的降阶逼近方法.同时,分析给出算法的误差界,针对C-Bezier曲线的特点,用极限手段考察与Bezier降阶的相互关系,并用算例进行了分析比较.
Degenerating condition C-Bezier curves are put forward. Applying perturbation of controlled top and the constraint optimization, an error of the degree reduction is also estimated. Further the scheme is combined with a subdivision algorithm to generate lower degree curves with lower error. The relationships between degree reduction of C-Bezier curves and degree reduction of Bezier curves are derived.
出处
《北华大学学报(自然科学版)》
CAS
2009年第1期10-17,共8页
Journal of Beihua University(Natural Science)
基金
国家自然科学基金项目(70471084)
关键词
C-BÉZIER曲线
升阶
降阶
逼近
扰动约束
C-Bezier curve
Degree elevation
Degree reduction
Approximation
Perturbation constraints
作者简介
沈仙华(1979-),女,讲师,主要从事计算几何研究.