期刊文献+

流道面积比与阴极流量对交叉型流道PEMFC性能的影响 被引量:6

Effects of Flow Channel Area Ratio and Cathode Flow Rate on Cell Performance and Local Transport Characterestics of 3-D PEMFC with Interdigitated Flow Channel Design
在线阅读 下载PDF
导出
摘要 建立三维PEMFC传输模型,分析阴极流道面积比与阴极流量对交叉型流道质子交换膜燃料电池局部传递特性与电池性能的影响,模型中考虑了液态水生成,以更接近电池实际操作状态.流道面积比代表燃料流动面积与电池总面积之比,较大的流道面积比可提高燃料直接扩散面积,使更多氧气通过扩散方式进入扩散层和催化层参与电化学反应,增进化学反应速率,增大局部电流密度,从而提升电池性能.但对于交叉型流道设计,模拟结果表明,由于流道中挡板的作用,燃料由自然扩散传质转变为强制对流传质,流道面积比的影响被消弱,最佳的电池性能出现在流道面积比为0.4时.结果也显示,提高阴极流量可改善电池性能.通过分析电池内部电流密度、氧气流量和液态水分布等局部传递特性,揭示了流道面积比与阴极流量对电池性能影响的内在原因. A three-dimensional numerical model of proton exchange membrane fuel cell (PEMFC) has been established to investigate the effects of the flow channel area ratios (Ar ) and the cathode fuel flow rates on the internal transport phenomena and cell performance of PEMFC with the parallel and interdigitated flow channel designs. The effects of liquid water formation on the reactant gas transport were taken into account in the present study. Because At represented the ratio of the flow area of fuel to the cell area, it was expected that higher Ar allows more oxygen to diffuse directly into the gas catalyst layer, which improved the cell performance. Numerical predictions showed that the cell performance apparently increased as Ar increases for the parallel flow channel design. However, for the interdigitated flow channel design, because the fuel transfer manner was converted from diffusion into forced convection, the flow channel area ratios had relatively less effect on cell performance than for parallel flow channel design. The best performance occurs for A r of 0. 4. Numerical predictions also indicate that the cathode fuel flow rate had significant effect on the cell performance. The effects of Ar and cathode fuel flow rate on cell performance are interpreted in terms of the analysis the local current density, oxygen flow rate, and liquid water distribution in cell.
出处 《应用基础与工程科学学报》 EI CSCD 2008年第6期900-910,共11页 Journal of Basic Science and Engineering
基金 国家自然科学基金(No.50876009)资助
关键词 质子交换膜燃料电池 流道设计 交叉型流道 水管理 proton exchange membrane fuel cells flow channel design interdigitated flow channel water management
作者简介 杨立新(1969-),男,博士,讲师. 通讯作者:王晓东(1973-),男,博士,副教授.E-mail:wangxd99@gmail.com
  • 相关文献

参考文献31

  • 1侯中军,衣宝廉.质子交换膜燃料电池性能衰减研究进展[J].电源技术,2005,29(7):482-487. 被引量:14
  • 2谢晓峰,张迪,毛宗强,吴秋林.质子交换膜的研究现状与进展[J].膜科学与技术,2005,25(4):44-50. 被引量:22
  • 3刘富强,邢丹敏,于景荣,衣宝廉,张华民.质子交换膜燃料电池Nafion/PTFE复合膜的研究[J].电化学,2002,8(1):86-92. 被引量:13
  • 4刘卫锋,唐倩,衣宝廉,张华民.燃料电池阴极催化剂的研究进展[J].电源技术,2002,26(6):457-461. 被引量:9
  • 5Bernardi D M,Verbrugge M W. Mathematical model of gas diffusion electrode bonded to a polymer electrolyte [ J ]. AIChE Journal, 1991,37 : 1151-1163
  • 6Singh D, Lu D M, Djilali N. A two-dimensional analysis of mass transport in proton exchange membrane fuel cells[ J]. Int. J. Engineering Science, 1999,33:431-452
  • 7Nguyen T V, White R E. A water and heat management model for proton-exchange- membrane fuel cells [ J ]. J. Electrochem. Soc. , 1993,140:2178-2186
  • 8Rowe R, Li X. Mathematical modeling of proton exchange membrane fuel cells [ J ]. J. Power Sources ,2001,102:82-96
  • 9Djilali N,Lu D. Influenee of heat transfer on gas and water transport in fuel cells [ J ]. Int. J. Therm. Sci. ,2003, 41:29-40
  • 10Natarajan D,Nguyen T V. Two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors[ J]. J. Electrochim. Soc. ,2001,148:1324-1335

二级参考文献61

  • 1Malhotra S, Datta R. Membrane supported nonvolatileacidic ele ctrolytes allow higher temperature operation of proton- exchange membrane fuel cells[J]. J Electrochem Soc, 1997, 144:L23-L26.
  • 2Felix N B, Bhuvanesh G, Otto H, et al. Study of radiation grafted FEP g- polystyrene membranes as polymer electrolytes in fuel cells[J]. Electrochimica Acta,1995,40(3) : 345 - 353.
  • 3Lehtinen T, Sundholm G, Holmberg S, et al. Electrochemical characterization of PVDF- based proton conducting membranes for fuel cells[J]. Electrochimica Acta, 1998, 43(12-13): 1881-1890.
  • 4Baradie B, Dodelet J P, Guay D. Hybrid Nation- inorganic membrane with potential applications for polyer electrolyte fuel cells[J]. J Electroanalytical Chem,2000,489. 101-105.
  • 5Antonucci P L, Arico A S, Creti P, et al. Investigation of a direct methanol fuel cell based on a composite Nationsilica electrolyte for high temperture operation[J]. Solid State Ionics, 1999, 125:,431 437.
  • 6Watanabe M, Uchida H, Emori M. Polymer electrolyte membranes incorporated with nanometer- size particles of Pt and/or metal oxides: Experimental analysis of the self - humidification and suppression of gas - crossover in fuel cells[J]. J Phys Chem B, 1998, 102: 3129-3137.
  • 7Chisholm C R I, Haile S M. Superprotonic behavior of CsHS:O4 CsH2PO4 system[J]. Solid State Ion, 2000,136- 137: 229-241.
  • 8Sossina M H Dane A B, Calum R I, et al. Solid acids as fuel cell electrolytes[J]. Nature, 2001, 410(19): 910-913.
  • 9Rieke P C, Vanderborgh N E. Polymer electrolyte fuel cell model[J].J Membr Sci, 1987,32:313.
  • 10Pourcelly G, Oikonomou A, Gavach C. Influence of the water content on the kinetics of counter - ion transport in perfluorosulphonic membranes [ J ]. J Electroanal Chem,1990,287 : 43 - 59.

共引文献51

同被引文献77

  • 1胡鸣若,石玉美,朱新坚,顾安忠,于立军.质子交换膜燃料电池两维、两相流动模型[J].高校化学工程学报,2004,18(6):676-684. 被引量:5
  • 2MENG H. A two-phase non-isothermal mixed-domainPEM fuel cell model and its application to two -dimensional simula tions [J].Journal of PowerSources,2007,168(1) :218-228.
  • 3KUMAR P M, KOLAR A K. Effect of cathode design onthe performance of an air-breathing PEM fuel cell [J].International Journal of Hydrogen Energy ,2010,35(2):671-681.
  • 4IRANZO A,ROSA F,PINO J. A simulation tool forgeometrical analysis and optimization of fuel cellbipolar plates: development,validation and results [J].Energies,2009,2(3) :582-594.
  • 5LE A D,ZH0U B. A general model of proton exchangemembrane fuel cell [J].Journal of Power Sources,2008,182(l):197-222.
  • 6GRUJICIC M,CHITTAJALLU K M. Design andoptimization of polymer electrolyte membrane (PEM)fuel cells [J].Applied Surface Science,2004,227 (1):56-72.
  • 7KUAN Y D,CHANG J Y,LEE S M,et al.Characterization of a direct methanol fuel cell usingHilbert curve fractal current collectors [J].Journal ofPower Sources,2009,187( 1) : 112-122.
  • 8FERNG Y M,SU A. A three dimensional full cell CFDmodel used to investigate the effects of different flowchannel designs on PEMFC performance [J]. JnternationalJournal of Hydrogen Energy,2007,32 (17) :4466-4476.
  • 9JIAO K,ZHOU B. Effects of electrode wettabilities onliquid water behaviors in PEM fuel cell cathode [J].Journal of Power Sources,2008,175(1) : 106-119.
  • 10KUMAR P M, KOLAR A K. Effect of cathode channeldimensions on the performance of an air -breathingPEM fuel cell [J].International Journal of ThermalSciences,2010,49(5) :844-857.

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部