期刊文献+

一种基于循环移位矩阵的LDPC码构造方法 被引量:7

Construction of LDPC Codes Based on Circulant Permutation Matrices
在线阅读 下载PDF
导出
摘要 具有准循环结构的低密度奇偶校验码(QC-LDPC Codes)是目前被广泛采用的一类LDPC码。本文提出了一种结合PEG算法构造基于循环移位矩阵的QC-LDPC码的方法。该方法首先将QC-LDPC码传统的基于比特的二分图简化为基于Block的二分图,然后在该图中采用PEG算法遵循的环路最大原则确定每一个循环移位矩阵的位置,最后根据QC-LDPC码的环路特性为每一个循环移位矩阵挑选循环移位偏移量。利用该算法,本文构造了长度从1008bit到8064bit,码率从1/2到7/8各种参数的LDPC码。仿真结果表明,本文构造的LDPC码性能优于目前采用有限几何、两个信息符号的RS码、组合数学等常用的代数方法构造的QC-LDPC码。 Quasi Cyclic LDPC (QC-LDPC) codes are of particular interest in various areas. In this paper, a method to construct a class of QC-LDPC codes based on circulant permutation matrices is showed. The method chooses the position of each non-zero sub-matrix in the bipartite graph based on blocks. Then the circulant permutation value of each sub-matrix is decided. With the proposed algorithm, a few LDPC codes were constructed with the code length from 1008 bit to 8064 bit and with code rate from 1/2 to 7/8. Simulation results show that the proposed LDPC codes are superior to QC-LDPC codes with other construction algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第10期2384-2387,共4页 Journal of Electronics & Information Technology
基金 国家部级基金(9140A22030106JW02)资助课题
关键词 准循环低密度奇偶校验码 PEG算法 循环移位矩阵 Quasi-Cyclic LDPC (QC-LDPC) codes Progressive Edge Growth (PEG) algorithm Circulant permutation matrices
作者简介 乔华:男,1980年生,博士生,研究方向为信道编码以及卫星通信网. 管武:男,1981年生,博士生,研究方向为信道编码以及通信信号处理. 董明科:男,1973年生,硕士,研究领域为数字通信、软件无线电. 项海格:男,1941年生,主要研究领域为数字通信、无线和卫星通信网、软件无线电以及基于芯片的通信系统(SOC).
  • 相关文献

参考文献11

  • 1Hu X Y, Eleftheriou E, and Arnold D M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. on Inf. Theory, 2005, 51(1): 386-398.
  • 2Mansour M M and Shanbhag N R. A novel design methodology for high-performance programmable decoder cores for AA-LDPC codes. SIPS'03., Seoul, Aug. 2003: 29-34.
  • 3Kou Y, Lin S, and Fossorier M P C. Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans. on Inf. Theory, 2001, 47(7): 2711-2736.
  • 4Djurdjevic I, Xu J, Abdel-Ghaffar K, and Lin S. A class of low-density parity-check codes constructed based on Reed- Solomon codes with two information symbols. IEEE Comm. Lett., 2003, 7(7): 317-319.
  • 5Ammar B, Honary B, Kou Y, Xu J, and Lin S. Construction of low-density parity-check codes based on balanced incomplete block designs. IEEE Trans. on Inf. Theory, 2004, 50(6): 1257-1269.
  • 6Xu J, Zeng L, Lan L, Chen L, and Lin S. Construction of low-density parity-check codes by superposition. IEEE Trans. on Comm., 2005, 53(2): 243-251.
  • 7Kim K S, Lee S H, Kim Y H, and Ahn J Y. Design of binary LDPC code using cyclic shift matrices. Elec. Lett., 2004, 40(5): 325-326.
  • 8Fossorier M P C. Quasicyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. on Inf. Theory, 2004, 50(8): 1788-1793.
  • 9Myung Seho, Yang Kyeongcheol, and Kim Jaeyoel. Quasi-cyclic LDPC codes for fast encoding. IEEE Trans. on Inf. Theory, 2005, 51(8): 2894-2901.
  • 10Li Z W and Kumar B V K V. A class of good quasi-cyclic low -density parity check codes based on progressive edge growth graph. Signals, Systems and Computers'04., California, 2004: 1990-1994.

同被引文献75

  • 1刘立祥,谢剑英,张敬辕.非均匀采样信号重建的一种直接方法[J].仪器仪表学报,2001,22(z2):61-62. 被引量:5
  • 2刘俊琳,朱近康,邱玲.基于多项式模型的时频二维OFDM信道估计算法[J].信号处理,2007,23(2):278-282. 被引量:3
  • 3赵旦峰,陈艳,高敬鹏,薛睿.基于单位阵的循环移位构造LDPC码的研究[J].应用科技,2007,34(5):8-10. 被引量:1
  • 4Gallager R G. Low- density Parity Check Codes[J]. IRETrans. on Infor. Theory, 1962,8 : 21 - 28.
  • 5Tanner R M. A Recursive Approach to Low - complexity Codes[J].IEEE Trans. on Infor. Theory, 1981, IT- 27: 533 -547.
  • 6Mackay D J C, Neal R M. Good Codes Based on Very Sparse Matrices [A] Cryptography and Coding, 5th IMA Conference in Lecture Notes in Computer Science[C]. 1995, 1025:100 - 111.
  • 7Tanner R M. A Class of Group - Structured LDPC Codes [A]. ICSTA 2001 Proceedings[C]. Ambleside,2001.
  • 8Xiao Yuhu. Progressive Edge - Growth Tanner Graphs[J]. IEEE Trans. on Inform. Theory,2001:995 - 1001.
  • 9Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Trans on Informa- tion Theory, 2001, 47(2) : 498-519.
  • 10Chen J, Dholakia A, Eleftheriou E, et al. Reduced-com- plexity decoding of LDPC codes. IEEE Trans On Commu- nications, 2005, 53(8) : 1288-1299.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部