期刊文献+

使用准循环LDPC码的OFDM系统性能分析 被引量:1

Performance Analysis of OFDM System Coded by QC-LDPC
在线阅读 下载PDF
导出
摘要 参照IEEE 802.16e标准中的准循环LDPC码校验矩阵结构,设计了一种新的校验矩阵,并将其应用于OFDM系统中。同时,将该设计方案与RS和卷积编码级联方案进行比较,仿真显示,该方案与级联编码方案有几乎相同的编码增益。OFDM调制之前采用BPSK映射比采用QPSK映射有2dB的增益。出于对比的目的,在BPSK调制模式下,对该设计方案与级联编码方案也做了仿真比较,结果显示,前者比后者有大约3dB的编码增益。 Referring to the parity check matrix structure of Quasi Cycle LDPC code in IEEE 802.16e, a new parity check matrix was designed and was applied to OFDM system. Comparing the design scheme with concatenated code scheme which was constructed by RS and convolution code, the simulation results show that the design and the concatenated code have almost the same coding gain. Using BPSK before OFDM modulation can have 2 dB more gain than the condition of using QPSK. For the purpose of comparison, under BPSK modulation, a simulated comparison between the design scheme and concatenated code is performed, and results show that the design has almost 3 dB gain than concatenated code.
出处 《现代电子技术》 2011年第21期49-50,54,共3页 Modern Electronics Technique
基金 新一代宽带无线移动通信网国家科技重大专项(2009ZX03006-004) 江苏省无锡市科技局政产学研合作计划项目(CYWL0906)
关键词 IEEE 802.16e 准循环LDPC OFDM RS编码 卷积编码 IEEE 802.16e quasi cycle-LDPC OFDM RS code convolution code
  • 相关文献

参考文献12

二级参考文献58

  • 1袁建国,叶文伟,毛幼菊.光通信系统中一种新颖的级联码型[J].光电工程,2007,34(4):89-93. 被引量:6
  • 2赵旦峰,陈艳,高敬鹏,薛睿.基于单位阵的循环移位构造LDPC码的研究[J].应用科技,2007,34(5):8-10. 被引量:1
  • 3Gallager R G. Low-density parity-check codes[M]. Cambridge, MA: MIT Press, 1963.
  • 4Richardson T, Urbanke R. The capacity of low-density parity check codes under message passing decoding[J].IEEE Trans. on Inform. Theory, 2001, 47(2): 599-618.
  • 5Chung S Y, Forney G D, Richardson Jr T J, et al. On the design of low-density parity check codes within 0. 004 5 dB of the Shannonlimit[J]. IEEE Commun. Lett. , 2001, 5(2):58-60.
  • 6MacKay D J C, Wilson S T, Davey M C. Comparison of construetions of irregular Gallager codes[J]. IEEE Trans. on Corn munications, 1999,47(10) : 1449 - 1454.
  • 7Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Trans. on Information Theory, 2004, 50(12):2966-2984.
  • 8Seho Myung, Kyeongcheol Yang. A combining method of quasicyclic LDPC codes by the Chinese remainder theorem[J]. IEEE Communications Letters, 2005. 9(9) :823 - 825.
  • 9Lin Dengsheng, Li Qiang, Li Shaoqian. Semi-random construction of quasi-cyclic LDPC codes[C]//Proc. of International Conference on Communications, Circuits and Systems, 2005 ( 1 ) : 9 -13.
  • 10Kim Sunghwan, No Jong-Seon, Chung Habong, et al. Girth analysis of Tanner's (3,5) QC LDPC codes[C]//Proc, of Inter national Symposium on 1n formation Theory, 2005: 1632-1636.

共引文献28

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部