摘要
以某水电站地下厂房区软岩部位试验洞监测资料为基础,运用基于均匀设计-遗传算法-神经网络的人工智能反演分析方法,在考虑了仪器埋设滞后的位移损失的情况下,对岩体在宏观结构条件下的流变参数进行三维粘弹塑性位移反分析,得到了岩体的流变参数并进行了位移预测,与监测成果进行了对比分析。结果表明:预测围岩流变位移、速率与监测结果比较接近,规律性较好,说明辨识效果较好。
Parameters identification of rheological constitutive model is an important content of geological rheology. On the basis of the in-situ measuring displacement information of the test cavity surrounding rock of some hydroelectric station underground powerhouse, rockmass rheological parameters are identified through 313 viscoelastic-plastic numerical analysis and intelligence method that include uniform design (UD) ,BP artificial neural network (BP-ANN) and genetic algorithm (GA). And then the surrounding rock mass rheological displacements as a result of the excavation of test cavity are forecasted. In comparison with the monitoring displacements, the forecasting displacements and velocities are approximate to the measured displacements and velocities, which prove the rightness and reliability of the above method.
出处
《长江科学院院报》
CSCD
北大核心
2008年第5期24-28,共5页
Journal of Changjiang River Scientific Research Institute
基金
中央级公益科研基本业务费项目(YWF0736/YT06)
国家自然科学基金重点资助项目(50539110
50639090)
关键词
软岩流变
参数辨识
三维粘弹塑性模型
监测位移修正
位移反分析
soft rockmass creep
Parameters identification
3D viscoelastic-plastic model
modification of monitoring displacements
displacement back analysis
作者简介
董志宏(1978-),男,河北丰南人,工程师,主要从事岩石工程稳定性与监测反馈分析方面的科研工作,(电话)027-82829886(电子信箱)ckyyjs2004@163.com。