期刊文献+

奇异协方差阵下有效前沿及有效组合的解析解 被引量:6

ANALYTIC SOLUTIONS OF EFFICIENT FRONTIER AND EFFICIENT PORTFOLIO WITH SINGULAR COVARIANCE MATRIX
原文传递
导出
摘要 利用广义逆矩阵研究了协方差阵奇异时的投资组合问题,突破了传统方法中要求协方差阵可逆的限制,得到了证券市场存在有效组合的充要条件,并给出了有效前沿和有效组合的解析解,成功地推广了经典Markowitz模型,同时还将有助于证券组合有效子集的深入研究. This paper is concerned with the portfolio selection model with singular covariance matrix by using the generalized inverse matrix. The sufficient and necessary condition for existing efficient portfolio is obtained, and also the analytic solutions of efficient portfolio and efficient frontier is derived, which generalize successfully the classic Markowitz model and are helpful to investigate portfolio efficient subset further.
出处 《系统科学与数学》 CSCD 北大核心 2008年第9期1134-1147,共14页 Journal of Systems Science and Mathematical Sciences
基金 深圳大学科研启动基金(200738) 国家自然科学基金(10626021) 广东省自然科学基金(06300957)资助项目.
关键词 奇异协方差阵 有效组合 有效前沿 解析解 Singular covariance matrix, efficient portfolio, efficient frontier, analytic solutions.
  • 相关文献

参考文献12

  • 1Markowitz H. Portfolio selection. Journal of Finance, 1952, 7(1): 77-91.
  • 2Buser S A. Mean-variance portfolio selection with either a singular or nonsingular variance-covariance matrix. Journal of Financial and Quantitative Analysis, 1977, 12(3): 347-361.
  • 3Ryan P J and Lefoll J. A comment on mean-variance portfolio selection with either a singular or nonsingular variance-covariance matrix. Journal of Financial and Quantitative Analysis, 1981, 16(3): 389-395.
  • 4Szego G P. Portfolio Theory: With Application to Bank Asset Management. New York: Academic Press, 1980.
  • 5VoRoS J. The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity. European Journal of Operational Reasearch, 1987, 32(2): 302-310.
  • 6Korki B and Turtle H J. A note on the analytics and geometry of limiting mean-variance investment opportunity sets. Review of Quantitative Finance and Accounting, 1997, 9(3): 289-300.
  • 7杨杰,史树中.证券集的组合前沿分类与有效子集[J].经济数学,2001,18(1):8-18. 被引量:10
  • 8史树中,杨杰.证券组合选择的有效子集[J].应用数学学报,2002,25(1):176-186. 被引量:25
  • 9姚海祥,易建新,李仲飞.奇异方差-协方差矩阵的n种风险资产有效边界的特征[J].数量经济技术经济研究,2005,22(1):107-113. 被引量:11
  • 10苏咪咪,叶中行.协方差矩阵奇异情况下的最优投资组合[J].应用概率统计,2005,21(3):244-248. 被引量:18

二级参考文献35

  • 1[1]Markowitz H. Portfolio Selection. Journal of Finance, 1952, 7:77-91
  • 2[2]Markowitz H. Portfolio Selection: Efficient Diversification of Investments. Cambridge: Basil Blackwell, 1959, 1991 Second ed.
  • 3[3]Michaud R O. Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation. Boston: Havard Business School Press, 1998
  • 4[4]Szego G P. Portfolio Theory, with Application to Bank Asset Management. New York: Acad. Press,1980
  • 5[5]Huberman G, Kandel S. Mean-variance Spanning. Journal of Finance, 1987, 42:873-888
  • 6[6]Ross S. Mutual Fund Separation in Financial Theory: The Separating Distributions. Journal of Economic Theory, 1978, 17:254-286
  • 7[7]Merton R C. On the Microeconomic Theory of Investment under Uncertainty. In: Arrow K J, Intriligator M, eds., Handbook of Mathematical Economics, Vol. Ⅱ, Amsterdam: North-Holland, 1982, 601-609
  • 8[8]Merton R C. Continuous-Time Finance, Rev. ed. Oxford: Blackwell, 1992
  • 9[9]Rothschild M, Stiglitz J E. Increasing Risk I: A Definition. Journal of Economic Theory, 1970, 2:225-243
  • 10[10]Rothschild M, Stiglitz J E. Increasing Risk II: Its Economic Consequences. Journal of Economic Theory, 1971, 3:66-84

共引文献50

同被引文献87

  • 1姚海祥,易建新,李仲飞.奇异方差-协方差矩阵的n种风险资产有效边界的特征[J].数量经济技术经济研究,2005,22(1):107-113. 被引量:11
  • 2苏咪咪,叶中行.协方差矩阵奇异情况下的最优投资组合[J].应用概率统计,2005,21(3):244-248. 被引量:18
  • 3吴国清,周远航.规模组合、因子定价与均值方差张成——来自中国A股的证据[J].数量经济技术经济研究,2005,22(11):57-67. 被引量:10
  • 4Szego G P. Portfolio Theory: with Application to Bank Asset Management. New York: Academic Press, 1980.
  • 5Markowitz H, Lacey R, Plymen J, Dempster M A H, Tompkins R G. The General Mean-Variance Portfolio Selection Problem (and Discussion). Phil. Trans. R. Soc. Lond. A., 1994, 347(1684): 543-549.
  • 6王金才,徐伟,郭丹.证券组合选择有效子集的分类和搜索方法.数学的实践和认识,2006,36(2):115-118.
  • 7Huberman G, Kandel S. Mean-Variance Spanning. Journal of Finance, 1987, 42(4): 873-888.
  • 8Cheung C S, Kwan C C, Mountain D C. On the Nature of Mean-variance Spanning. Finance Research Letters, 2009, 6(2): 106-113.
  • 9Glabadanidis P. Measuring the Economic Significance of Mean-variance Spanning. The Quarterly Review of Economics and Finance, 2009, 49(2): 596-616.
  • 10Hansen L P, Jagannathan R. Implication of Security Market Data for Models of Dynamic Economies Journal of Political Economy, 1991, 99(2): 225-262.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部