期刊文献+

非压缩动力系统的Perron-Frobenius算子具有PF性质的几个充分条件

Some Sufficient Conditions for the Non-contractive Dynamical Systems' Perron-Frobenius Operators Possessing the Perron-Frobenius Property
在线阅读 下载PDF
导出
摘要 讨论了n维非压缩动力系统及其所定义的Perron-Frobenius算子。通过建立n维非压缩动力系统的PF算子与非膨胀函数迭代系统的Ruelle算子之间的联系,给出了所论算子具有Perron-Frobe-nius性质的几个充分条件。 In this paper, we study the non -contractive dynamical systems and the associated Perron -Frobenius operators, and we give some sufficient condition for the operator possessing the Perron - Frobenius property.
作者 刘卉
机构地区 嘉应学院数学系
出处 《嘉应学院学报》 2008年第3期26-28,共3页 Journal of Jiaying University
关键词 非压缩动力系统 函数迭代系统 Dini连续 Perron—Frobenius算子 Perron—Frobenius性质 non - contractive dynamical system iterated function system Dini continuity Perron - Frobenius operator Perron- Frobenius property
作者简介 刘卉(1979-),女,广东梅州人,讲师,硕士,主要研究方向:分形几何。
  • 相关文献

参考文献6

  • 1LAU Kasing,YE Yuanling. Ruelle operator with nonexpansive IFS[J]. Studia Mathematica, 2001, 148(2) :143 -169.
  • 2] RUELLE D. Statistical mechanics of a one- dimensional lattice gas[ J]. Comm Math Phys, 1968 (9) :267 -278.
  • 3WALTERS P. Ruelle's operator theorem and g- Measure[ J]. Trans Amer Math Soc, 1975, 214:375 -387.
  • 4FAN Aihua,LAU Kasing. Ierated function syustem and Ruelle operator[J]. J Mathe Anal Appl, 1999, 231:319 -344.
  • 5叶远灵.非压缩动力系统及其Perron-Frobenius算子[J].华南师范大学学报(自然科学版),2005,37(3):100-107. 被引量:1
  • 6YE Yuanlign. Decay of correlations for weakly expansive dynamical systems[ J]. Nonlinearity, 2004 (17) :1377 -1391.

二级参考文献8

  • 1LAU K S, YE Y L. Ruelle operator with nonexpansive IFS[J]. Studia Math, 2001, 148: 143-169.
  • 2BOWEN R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms[A]. Lecture Notes in Math[M]. Berlin: Spring-Verlag, 1975, 470.
  • 3FAN A H, LAU K S. Iterated function system and Ruelle operator[J]. J Math Anal Appl, 1999, 231: 319-344.
  • 4RUELLE D. Statistical mechanics of a one-dimensional lattice gas[J]. Comm Math Phys, 1968, 9: 267-278.
  • 5WALTERS P. Ruelle's operator theorem and g-Measure[J]. Trans Amer Math Soc, 1975, 214: 375-387.
  • 6LIVERANI C, SAUSSOL B, VAIENTI S. A probabilistic approach to intermittency[J]. Ergodic Theory Dynam Systems, 1999, 19: 671-685.
  • 7YE Y L. Decay of correlations for weakly expansive dynamical systems[J]. Nonlinearity, 2004, 17: 1377-1391.
  • 8LASOTA A, YORKE J A. On the existence of invariant measures for piecewise monotonic transformations[J]. Trans Amer Math Soc, 1973, 186: 481-488.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部