期刊文献+

具有双中心的三次可积非Hamiltonian系统的Poincaré分支

The Poincaré Bifurcation of Cubic Non-Hamiltonian Integrable Systems with Double Centers
在线阅读 下载PDF
导出
摘要 本文讨论一类具有双中心的三次可积非Hamiltonian系统的Poincaré分支问题,此问题的证明可归结为Abel积分的零点个数估计。利用Picard-Fuchs方程和Riccati方程讨论系统轨线的性态,证明其Poincaré分支最多可以产生6个极限环,而且可以产生6个极限环。 In this paper, we study the Poincaré bifurcation of cubic non-Hamiltonian integrable systems with double centers. The proof relies on an estimation of the number of zeros of a related Abelian integrals. By using the Picard-Fuchs equation and the Riccati equation, we derive the properties of trajectory and prove that the Poincaré bifurcation may and can generate six limit cycles after a small cubic perturbation.
作者 宋燕
机构地区 渤海大学数学系
出处 《工程数学学报》 CSCD 北大核心 2008年第4期679-684,共6页 Chinese Journal of Engineering Mathematics
关键词 三次可积非Hamiltonian系统 POINCARÉ分支 PICARD-FUCHS方程 极限环 ABEL积分 cubic non-Hamiltonian integrable system Poincaré bifurcation Picard-Fuchs equation limit cycle Abelian integral
作者简介 宋燕(1962年9月生),女,硕士,教授、研究方向:常微分方程定性理论.
  • 相关文献

参考文献9

  • 1Freddy Dumortier, Li Chengzhi. Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) saddle loop and two saddle cycle[J]. J Differential Equations, 2001, 176:114-157
  • 2Freddy Dumortier, Li Chengzhi. Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ) cuspidal loop[J]. J Differential Equations, 2001, 175:209-243
  • 3Freddy Dumortier, Li Chengzhi. Perturbations from an elliptic Hamiltonian of degree four: (Ⅲ) Global Center[J]. J Differential Equations, 2003, 188:473-511
  • 4Freddy Dumortier, Li Chengzhi. Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ) figure eight-loop[J]. J Differential Equations, 2003, 188:512-554
  • 5宋燕.具有全局中心的三次Hamilton系统的Poincaré分支[J].数学学报(中文版),2004,47(2):291-298. 被引量:9
  • 6戈鲁别夫著.路可见,齐民友译.微分方程解析理论讲义[M].北京:高等教育出版社,1956
  • 7高维新.解析理论讲义[R].北京大学数学系用
  • 8宋燕.The Poincaré Bifurcation of a Class of Planar Hamiltonian Systems[J].Northeastern Mathematical Journal,2006,22(2):167-172. 被引量:4
  • 9菲赫金哥尔茨格马.微积分学教程[M].第二卷第一分册,79-84,高等教育出版社,1956

二级参考文献3

  • 1Zhao Y. L., Abelian integrals for cubic Hamilton vector Fields, The Doctoral Thesis in Peking University,1998.
  • 2Li G. Z., Li W. G., Llibre J., Zhang Z. F., Bifurcation of limit cycles from quadratic isochronous centers,Barcelona, CRM Preprint, 413.
  • 3Zhang Z. F., Li C. Z., Zheng Z. M. et al., The basis of bifurcation theory for vector fields, Beijing: ChinaHigher Education Press, 1997, 94-104.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部