摘要
本文讨论一类具有双中心的三次可积非Hamiltonian系统的Poincaré分支问题,此问题的证明可归结为Abel积分的零点个数估计。利用Picard-Fuchs方程和Riccati方程讨论系统轨线的性态,证明其Poincaré分支最多可以产生6个极限环,而且可以产生6个极限环。
In this paper, we study the Poincaré bifurcation of cubic non-Hamiltonian integrable systems with double centers. The proof relies on an estimation of the number of zeros of a related Abelian integrals. By using the Picard-Fuchs equation and the Riccati equation, we derive the properties of trajectory and prove that the Poincaré bifurcation may and can generate six limit cycles after a small cubic perturbation.
出处
《工程数学学报》
CSCD
北大核心
2008年第4期679-684,共6页
Chinese Journal of Engineering Mathematics
作者简介
宋燕(1962年9月生),女,硕士,教授、研究方向:常微分方程定性理论.