期刊文献+

基于动态主元分析法的传感器故障检测 被引量:8

Sensor Fault Detection Based on Dynamic Principle Component Analysis
在线阅读 下载PDF
导出
摘要 提出了一种基于动态主元分析的传感器故障检测方法。利用数据矩阵前t时刻和当前时刻的数据,建立多变量多时刻的自回归统计模型。计算主元数据矩阵,建立动态主元模型。以测量速度最慢的传感器的测量周期为统一采样周期,4个连续采样周期为一个诊断周期,建立动态三维测量矩阵,采用残差的平方预报误差的指数加权移动平均(Squared prediction error-Exponentially weighted moving average,SPE-EWMA)模型检测传感器故障。在只存在传感器故障的前提下,模拟发动机开车过程中几种典型的渐变性故障和突变性故障,实验结果表明,算法实时跟踪了各种检测指标的变化,准确检测出故障传感器。 A sensor falut detection method is presented based on dynamic principle component analysis. The self return statistic model is built by the former and current data of data matrix. The principle component data matrix is obtained to build dynamic principle component analysis (DPCA) model. The measurement period of the sensor with the slowest measurement speed is taken as the sampling rate; and four continuous sampling periods are selected as a diagnosis pe- riod to build dynamic and three-dimensional measurement matrix. The squared prediction er-ror-exponentially weighted moving average (SPE-EWMA) model is used to detect the sensor fault. Under the condition of the existence of the sensor fault, the gradual and sudden fault is simulated on the start process of aeroengine. Experimental results indicate that the algorithm can track the change of various indexes in real time and check out sensor faults.
出处 《数据采集与处理》 CSCD 北大核心 2008年第3期338-341,共4页 Journal of Data Acquisition and Processing
关键词 传感器 主元分析方法 平方预报误差指数加权移动平均(SPE—EWMA) 故障检测 sensor principle component analysis (PCA) method squared prediction error-exponentially weighted moving average (SPE-EWMA) fault detection
作者简介 李果(1980-),男,博士研究生,研究方向:飞行数据智能处理、多源信息融合,E—mail:airforce1980@126.com。 张鹏(1979-),男,博士研究生,研究方向:飞行数据智能处理。 李学仁(1963-),男,教授,研究方向:自动化检测技术。 魏瑞轩(1968-)男,教授,研究方向:先进飞行控制理论,无人机。 冀捐灶(1966-),男,副教授,研究方向:电力电子及其智能检测。
  • 相关文献

参考文献8

二级参考文献17

  • 1俞济祥.卡尔曼滤波及其在惯性导航中的应用[M].北京:航空专业教材编审组,1984..
  • 2许秀玲.[D].西安:西北工业大学,2003.
  • 3[1]Dunia R, Qin S J. Joint diagnosis of process and sensor faults using principle component analysis[J]. Control Engineering Practice, 1998, 6:457-469.
  • 4[2]Qin S J, Li W H. Detection and identification of faulty sensors with maximum sensitivity[C]. In:Proceedings of American Control Conference, California, 1999,613-617.
  • 5[4]Chiang L.H., Russell E.L., and Braatz R.D. Fault detection and diagnosis in industrial systems[M]. London: Springer, 2000.
  • 6[5]Jackson J.E. A User's guide to principle components[M]. Wiley, New York, 1991.
  • 7[1]Ku W, Storer R H, Georgakis C. Disturbance Detection and Isolation by Dynamic Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory System, 1995,30:179-196.
  • 8[2]Russell Evan L, Chiang Leo H, Braatz Richard D. Fault Detection in Industrial Processes Using Canonical Variate Analysis and Dynamic Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory System, 2000,51:81-93.
  • 9[3]Lin Weilu, Qian Yu, Li Xiuxi. Nonlinear Dynamic Principal Component Analysis for On-line Process Monitoring and Diagnosis[J]. Comp.Chem.Engng, 2000,24:423-429.
  • 10[4]Downs, J J, Vogel, E F. A Plant-Wide Industrial Process Control Problem[J]. Comp.Chem.Engng, 1993,17(3):245-255.

共引文献56

同被引文献83

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部