期刊文献+

粗糙核主元分析方法及其在故障特征提取中的应用 被引量:11

ROUGH KERNEL PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION IN FAULT FEATURE EXTRACTION
在线阅读 下载PDF
导出
摘要 将粗糙集理论的属性约简与核主元分析方法结合起来,提出一种基于粗糙核主元分析的故障特征提取方法。该方法首先采用粗糙集理论的属性约简删除与分类无关或关系不大的特征,降低输入特征维数,排除干扰特征的影响,减小了特征提取计算量;然后再采用核主元分析方法进一步提取非线性特征;最后将该方法应用于轴承故障特征提取及故障识别中。应用结果表明,所提出的粗糙核主元分析方法(RKPCA)与传统的KPCA、PCA方法相比,使整个样本集的可分性变大,提高了分类正确率;同时还有效地降低了输入特征维数,提高了分类效率;并且对分类器具有较强的适应性和鲁棒性。 A new approach based on rough kernel principal component analysis (RKPCA) is proposed for aeroengine fault feature extraction, in which the rough set is combined with kernel principal component analysis. The method uses rough set to exclude the features which are not related to the fault, and to reduce the dimension of features and the cost of computation. Then kernel principal component analysis is employed to the obtained subset of features to extract the nonlinear features. Experiments of roll bearing are carried out test the performance of the method. Practical results show that compared with the features extracted by KPCA and PCA, the proposed method increases the separability of data set, performs better recognition ability and is adaptive for various classifiers.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第3期50-54,59,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(编号:60672179) 军队重点科研基金资助项目(编号:2003KJ01705)
关键词 故障诊断 特征提取 粗糙集 核主元分析 模式分类 fault diagnosis feature extraction rough set kernel principal component analysis pattern classification
作者简介 胡金海男,博士,讲师,1978年生
  • 相关文献

参考文献10

  • 1Carreira-Ferpian M A . A Review of Dimension Redcuction Techniques Technical Report C5-96-09. Department of Computer Science University of Sheffield, 1997.
  • 2赵立杰,王纲,李元.非线性主元分析故障检测和诊断方法及应用[J].信息与控制,2001,30(4):359-364. 被引量:23
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computa-tion, 1998(10) : 1299-1319.
  • 4Scholkopf B, Smola A, Muller K R. Kernel principal component analysis, in: Scholkopf B, Burges C, Smola A, eds Advances in kernel methods-support vector learning, Cambridge MA: MIT Press 1999 : 327-352.
  • 5曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 6李雄飞,谢忠时,李晓堂,李军.基于粗集理论的约简算法[J].吉林大学学报(工学版),2003,33(1):82-87. 被引量:7
  • 7Baudat G, Anouar F. Kernel-based methods and function approximation. International Joint Conference on Neural Networks( IJCNN' 01 ) [ C]. 2001,1244-1249.
  • 8潘励,张祖勋,张剑清.粗集理论在图像特征选择中的应用[J].数据采集与处理,2002,17(1):42-45. 被引量:15
  • 9Bezdek J C, Pal N R. Some new index of cluster Validity[ J]. IEEE Trans. SMC, 1998, 28(3) :301-315.
  • 10Hsu C W, Lin C J. A comparison of methods for muhiclass support vector machines [ J]. IEEE Trans. Neural Netw. 2002, 13(2) :415-425.

二级参考文献12

  • 1曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 2郑宏.遗传算法在影像处理与分析中应用的研究:学位论文[M].武汉:武汉测绘科技大学,2000..
  • 3Dong Dong,AIChE J,1996年,42卷,8期
  • 4Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic Publishers,1991:68~162.
  • 5Bjorvand A T.‘Rough Enough' -a system supporting the rough sets approach [K]. http://home.sn.no/~torvill..
  • 6Bazan J G, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decisions tables [M]. Ras Z W, Berlin: Springer-Verlag,1994:346~355.
  • 7Kriyszkiewicz M, Rybinski H. Finding reducts in composed information systems [A]. Ziarko W P (eds). Proceedings of RSKD'93 [C]. London: Springer-Verlag,1994:261~273..
  • 8Starzyk J, Nelson D E, Sturtz K. Reduct generation in information system [J]. Bulletin of International Rough Set Society, (1999). 3(1/2):19~22.
  • 9Hu XiaoHua.Knowledge discovery in databases:an attribute-oriented rough set approach[D].Regina University,1995.
  • 10Ku Keyun, Diao Lili,Lu Yuchang,et al.Sampling for approximate reduct in very large datasets. PKAW 2000.

共引文献147

同被引文献284

引证文献11

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部